Skip to content

Xiangyi1996/Cell-Segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cell-Segmentation

Official Implementation of Auto-Segmentation and Time-Dependent Systematic Analysis of Mesoscale Cellular Structure in β-Cells During Insulin Secretion.

Description of folders

dataloaders: scripts for preprocessing input data, data augmentation.
experiments: scripts for evaluating semantic results: cell/nucleus/mitochondria.
figure: the workflow figure for this paper.
networks: framework structure of unet.
script: commands to run model on test data.
utils: function for calculating loss, ramps.

Cell IDs

Partition of training/validation/testing: 18/3/3

Training set: 766_10, 766_11, 766_2, 766_7, 769_5, 769_7, 783_12 783_6, 784_4, 784_6, 784_7, 785_7, 822_4, 822_6, 822_7, 842_13, 931_14, 931_9,
Validation set: 766_5, 783_5, 842_12,
Testing set: 766_8, 784_5, 842_17,

Installation

Dependencies

  • Python 3.7.3
  • PyTorch 1.3.1
  • torchvision 0.4.2
  • Cuda version 10.0

alt text

Get Started

git clone https://github.com/Xiangyi1996/Cell-Segmentation.git
cd Cell-Segmentation
mkdir logs
mkdir data
mkdir results

Data Preparation for Soft X-ray tomograms (SXT) Dataset

1. Download SXT dataset from PBC

Please go to PBC Dataset and download SXT images and manual labels, and put them under data folder.

# symlink the pascal dataset
cd data
ln -s /path_to_sxt_images/ ./image_xyz
ln -s /path_to_manual_labels/ ./mask_xyz

2. Download pretrained model Download the FS_mito and FS_mem_nu weights and put them under ./results folder.

# download the pretrained model
cd results
mkdir FS_mito
mkdir FS_mem_nu

Inference in Command Line for test data

# Test mitochondria model 
sh script/test_mito.sh

# Test membrane and nuclear model
sh script/test_mem_nu.sh

There are some hyperparameters that you can adjust in the script.

python test/eval_mito.py --gpu 0 --exp FS_mito --num-workers 8 --batch-size 1 --num-classes 4 --test_idx 'iso'

PS: You can change the EXP in script to your pretrained model name. The above is just an example.

Results

We list the performance w/o 3D fusion.

Before 3D fusion Membrane Nucleus Mito
766_8 90.74 93.21 68.58
784_5 87.43 89.95 63.17
842_17 85.34 83.50 65.03
mean 87.84 88.89 65.59
After 3D fusion Membrane Nucleus Mito
766_8 93.54 93.92 70.34
784_5 89.41 91.82 67.29
842_17 91.85 89.49 67.40
mean 91.60 91.74 68.34

RDF Results

And the RDF of our results can be downloaded here

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published