Official Pytorch Implementation
Single Path One-Shot Neural Architecture Search with Uniform Sampling
pip install mxnet-cu101mkl
(depend on you CUDA version)
pip install gluoncv
pip install mxboard
pip install --extra-index-url https://developer.download.nvidia.com/compute/redist/cuda/10.0 nvidia-dali
pip install horovod
pip install mxop
(Optional)
cd $ROOT && mkdir data
cd data && ln -s path/to/imagenet_image_dir/ ./
or cd data && ln -s path/to/imagenet_rec_dir/ ./
Train supernet with:sh train_supernet.sh
Remark: Make sure your dataset path is correct before training.
Search subnet with flops/params limits:sh search.sh
Remark: Change resume-params
in search.py
or search.sh
, also you should make sure your dataset path is correct before searching, change flops/params limit if you like.
Retrain the best subnet:sh eval.sh
Remark: Make sure your dataset path is correct before retraining.
https://github.com/megvii-model/SinglePathOneShot
https://gluon-cv.mxnet.io/model_zoo/classification.html
https://github.com/CanyonWind/Single-Path-One-Shot-NAS-MXNet