Skip to content

Releases: Westlake-AI/A2MIM

A2MIM-ImageNet-Weights

23 Jan 01:31
Compare
Choose a tag to compare

A collection of weights and logs for self-supervised learning benchmark on ImageNet-1K (download). You can find pre-training codes of compared methods in OpenMixup and download all files from Baidu Cloud: A2MIM (3q5i).

Pre-training and Fine-tuning with ViT-S/B/L on ImageNet-1K

Method Backbone Epoch Fine-tuning Top-1 Pre-training Fine-tuning Results
SimMIM ViT-Small 800 81.7 config | ckpt | vis config ckpt | log
A2MIM ViT-Small 800 82.1 config | ckpt | vis config ckpt | log
SimMIM ViT-Base 800 83.8 config | ckpt | vis config ckpt | log
A2MIM ViT-Base 800 84.3 config | ckpt | vis config ckpt | log
SimMIM ViT-Large 800 85.6 config | ckpt config log
A2MIM ViT-Large 800 86.1 config | ckpt | vis config log

Pre-training and Fine-tuning with ResNet-50/101/152/200 on ImageNet-1K

Method Backbone Epoch Fine-tuning (A2) Top-1 Pre-training Fine-tuning Results
SimMIM ResNet-50 300 79.9 config | ckpt | vis RSB A2 -
A2MIM ResNet-50 100 78.8 config | ckpt | vis RSB A3 ckpt | log
A2MIM ResNet-50 300 80.4 config | ckpt | vis RSB A2 ckpt | log
SimMIM ResNet-101 300 81.3 config | ckpt RSB A2 ckpt (A3) | log (A3)
A2MIM ResNet-101 300 81.9 config | ckpt (300ep) | ckpt (800ep) RSB A2 ckpt (A2) | log (A2)
Si...
Read more