In baseline model training
, we use Source domain dataset
(
).
-
Edit
exp/sample_experiment/baseline_softmax/params.py
params = { 'n_epochs': 50, 'n_class': 19, # TODO 'size': [224, 224], 'batch_size': 64, 'lr': 'default', 'early_stopping': 5, 'train_ds': '/path/to/train_ds', # TODO 'test_ds': '/path/to/test_ds', # TODO 'save_every_n_epoch': 1 }
-
Start training:
python3 train_softmax.py <path/to/params.py>
-
During training, to visualize loss and accuracy:
tensorboard --logdir <path/to/params.py parent>
-
After training complete:
- Model
Checkpoint
directory is same aspath/to/params.py
- Model
-
Edit
exp/sample_experiment/baseline_triplet/params.py
params = { 'n_epochs': 100, 'n_class': 19, # TODO 'n_class_per_batch': 19, # TODO 'n_per_class': 10, # TODO 'size': [224, 224], 'margin': 0.7, # TODO 'lr': 'default', 'early_stopping': 20, 'pretrained_weight': '/path/to/baseline_softmax/model', # TODO 'train_ds': '/path/to/train_ds', # TODO 'save_every_n_epoch': 1 }
⚠️ Caution:pretrained_weight
should leftmodel
in the last in order to readcheckpoint
properly -
During training, to visualize triplet loss, hardest negative distance (HND) and hardest positive distance (HPD):
tensorboard --logdir <path/to/params.py parent>
-
Start training:
python3 train_softmax2triplet.py <path/to/params.py>
In FSL update training
, we use Target domain dataset
(
).
-
Edit
exp/sample_experiment/fewshot-triplet/params.py
params = { 'n_epochs': 100, 'n_class': 23, # TODO 'n_class_per_batch': 23, # TODO 'n_per_class': 10, # TODO 'size': [224, 224], 'margin': 0.7, # TODO 'lr': 'default', 'early_stopping': 20, 'pretrained_weight': '/path/to/baseline_triplet/model', # TODO 'train_ds': '/path/to/train_ds', # TODO 'test_ds': '/path/to/train_ds', # For export embeddings, could be same as train_ds 'save_every_n_epoch': 1 }
-
During training, to visualize triplet loss, hardest negative distance (HND) and hardest positive distance (HPD):
tensorboard --logdir <path/to/params.py parent>
-
Start training:
python3 train_triplet_fine_tune.py <path/to/params.py>