Setting up MPC architecture #632
build_and_unitest.yml
on: pull_request
Setup Environment
26s
Matrix: Build/Test
Confirm Build and Unit Tests Completed
0s
Annotations
33 errors and 1 notice
src/action/model_predictive_control/test/mpc_test.py#L1
# create some trajectory and init mpc and carla nodes
-
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L7
from boxconstraint import BoxConstraint
TIME_STEP = 0.05
-PREDICTION_HORIZON = 2.0
+PREDICTION_HORIZON = 2.0
SIM_DURATION = 500
class MPCCore:
def __init__(self):
-
+
self.params = {
'L': 2.875 # Wheelbase of the vehicle. Source : https://www.tesla.com/ownersmanual/model3/en_us/GUID-56562137-FC31-4110-A13C-9A9FC6657BF0.html
}
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L22
self.dt = TIME_STEP # Time step for discretization
self.state_dim = 4 # Dimension of the state [x, y, theta, v]
self.control_dim = 2 # Dimension of the control input [steering angle, acceleration]
-
+
# Initialize Opti object
self.opti = ca.Opti()
# Declare variables
- self.X = self.opti.variable(self.state_dim, self.N + 1) # state trajectory variables over prediction horizon
- self.U = self.opti.variable(self.control_dim, self.N) # control trajectory variables over prediction horizon
+ # state trajectory variables over prediction horizon
+ self.X = self.opti.variable(self.state_dim, self.N + 1)
+ # control trajectory variables over prediction horizon
+ self.U = self.opti.variable(self.control_dim, self.N)
self.P = self.opti.parameter(self.state_dim) # initial state parameter
- self.Q_base = ca.MX.eye(self.state_dim) # Base state penalty matrix (emphasizes position states)
+ # Base state penalty matrix (emphasizes position states)
+ self.Q_base = ca.MX.eye(self.state_dim)
self.weight_increase_factor = 1.00 # Increase factor for each step in the prediction horizon
self.R = ca.MX.eye(self.control_dim) # control penalty matrix for objective function
self.W = self.opti.parameter(2, self.N) # Reference trajectory parameter
-
+
# Objective
self.obj = 0
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L66
"""
self.waypoints = [] # Clear old waypoints
- if len(self.raw_waypoints) % 2 != 0: # Check if raw_waypoints is even
+ if len(self.raw_waypoints) % 2 != 0: # Check if raw_waypoints is even
print("Error: raw_waypoints length is not even. Ignoring the last unpaired value.")
self.raw_waypoints = self.raw_waypoints[:-1]
for i in range(0, len(self.raw_waypoints), 2):
x, y = self.raw_waypoints[i], self.raw_waypoints[i + 1]
waypoint = self.generate_waypoint(x, y)
- self.waypoints.append(waypoint)
-
- def generate_waypoint(x, y): # Convert to CasADi format and add to the waypoints list
+ self.waypoints.append(waypoint)
+
+ def generate_waypoint(x, y): # Convert to CasADi format and add to the waypoints list
return ca.vertcat(x, y)
def setup_mpc(self):
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L84
"""
for k in range(self.N):
- Q = self.Q_base * (self.weight_increase_factor ** k) # Increase weight for each step in the prediction horizon
+ # Increase weight for each step in the prediction horizon
+ Q = self.Q_base * (self.weight_increase_factor ** k)
x_k = self.X[:, k] # Current state
u_k = self.U[:, k] # Current control input
x_next = self.X[:, k + 1] # Next state
x_ref = ca.vertcat(self.W[:, k],
- ca.MX.zeros(self.state_dim - 2, 1)) # Reference state with waypoint and zero for other states
+ ca.MX.zeros(self.state_dim - 2, 1)) # Reference state with waypoint and zero for other states
dx = x_k - x_ref # Deviation of state from reference state
du = u_k # Control input deviation (assuming a desired control input of zero)
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L104
# Maximum steerin angle for dynamics
self.max_steering_angle_deg = max(wheel.max_steer_angle for wheel in
- vehicle.get_physics_control().wheels) # Maximum steering angle in degrees (from vehicle physics control
- self.max_steering_angle_rad = max_steering_angle_deg * (ca.pi / 180) # Maximum steering angle in radians
+ vehicle.get_physics_control().wheels) # Maximum steering angle in degrees (from vehicle physics control
+ self.max_steering_angle_rad = max_steering_angle_deg * \
+ (ca.pi / 180) # Maximum steering angle in radians
# Dynamics (Euler discretization using bicycle model)
for k in range(self.N):
- steering_angle_rad = self.U[0, k] * self.max_steering_angle_rad # Convert normalized steering angle to radians
+ # Convert normalized steering angle to radians
+ steering_angle_rad = self.U[0, k] * self.max_steering_angle_rad
self.opti.subject_to(self.X[:, k + 1] == self.X[:, k] + self.dt * ca.vertcat(
self.X[3, k] * ca.cos(self.X[2, k]),
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L118
self.U[1, k]
))
-
def setup_constraints(self):
-
+
self.opti.subject_to(self.X[:, 0] == self.P) # Initial state constraint
# Input constraints
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L146
# State constraints
# opti.subject_to(state_space.H_np @ X[:, i] <= state_space.b_np)
-
+
def setup_solver(self):
acceptable_dual_inf_tol = 1e11
acceptable_compl_inf_tol = 1e-3
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L177
print("Current velocity: ", v0)
if i > 0:
- self.closed_loop_data.append([x0, y0, theta0, v0]) # Original Code need i > 0
+ self.closed_loop_data.append([x0, y0, theta0, v0]) # Original Code need i > 0
initial_state = ca.vertcat(x0, y0, theta0, v0)
self.opti.set_value(self.P, initial_state)
# Set the reference trajectory for the current iteration
- self.opti.set_value(self.W, ca.horzcat(*self.waypoints[i:i + self.N])) # Concatenate waypoints
+ self.opti.set_value(self.W, ca.horzcat(
+ *self.waypoints[i:i + self.N])) # Concatenate waypoints
if self.prev_sol_x is not None and self.prev_sol_u is not None:
# Warm-starting the solver with the previous solution
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L196
"""
steering_angle = 0
throttle = 0
-
+
# Solve the optimization problem
sol = self.opti.solve()
-
+
if sol.stats()['success']:
# Extract control inputs (steering angle, throttle)
u = sol.value(self.U[:, 0])
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L216
self.open_loop_data.append(open_loop_trajectory)
if i > 0:
- predicted_state = self.prev_sol_x[:, 1] # Predicted next state from the previous solution
+ # Predicted next state from the previous solution
+ predicted_state = self.prev_sol_x[:, 1]
actual_state = np.array([x0, y0, theta0, v0]) # Current actual state from CARLA
residual = actual_state - predicted_state
self.residuals_data.append(residual)
-
+
# Update previous solution variables for warm-starting next iteration
self.prev_sol_x = sol.value(self.X)
self.prev_sol_u = sol.value(self.U)
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L228
else:
print("Error in optimization problem.")
- return steering_angle, throttle
\ No newline at end of file
+ return steering_angle, throttle
|
src/action/model_predictive_control/model_predictive_control/boxconstraint.py#L6
"""
Bounded constraints lb <= x <= ub as polytopic constraints -Ix <= -b and Ix <= b. np.vstack(-I, I) forms the H matrix from III-D-b of the paper
"""
+
def __init__(self, lb=None, ub=None, plot_idxs=None):
"""
:param lb: dimwise list of lower bounds.
|
src/action/model_predictive_control/model_predictive_control/boxconstraint.py#L17
self.ub = np.array(ub, ndmin=2).reshape(-1, 1)
self.plot_idxs = plot_idxs
self.dim = self.lb.shape[0]
- assert (self.lb < self.ub).all(), "Lower bounds must be greater than corresponding upper bound for any given dimension"
+ assert (self.lb < self.ub).all(
+ ), "Lower bounds must be greater than corresponding upper bound for any given dimension"
self.setup_constraint_matrix()
def __str__(self): return "Lower bound: %s, Upper bound: %s" % (self.lb, self.ub)
|
src/action/model_predictive_control/model_predictive_control/boxconstraint.py#L67
return samples
def clip_to_bounds(self, samples):
- return np.clip(samples, self.lb, self.ub)
\ No newline at end of file
+ return np.clip(samples, self.lb, self.ub)
|
src/action/model_predictive_control/model_predictive_control/mpc_node.py#L12
# See the License for the specific language governing permissions and
# limitations under the License.
-import rclpy
+import rclpy
from rclpy.node import Node
from wato_msgs/simulation/path_planning_msgs import CarlaEgoVehicleControl, CarlaEgoVehicleStatus
|
src/action/model_predictive_control/model_predictive_control/mpc_node.py#L34
# Subscribe to vehicle state (only retrieving velocity)
self.state_subscription = self.create_subscription(
CarlaEgoVehicleStatus, '/carla/ego/vehicle_status', self.vehicle_state_callback, 10)
-
+
# Subscribe to get vehicle position/orientation (x, y, w)
self.state_odom_subscription = self.create_subscription(
Odometry, 'T/carla/ego/odometry', self.state_odom_callback, 10)
-
- self.control_publisher = self.create_publisher(CarlaEgoVehicleControl, '/carla/ego/vehicle_control_cmd', 10)
+
+ self.control_publisher = self.create_publisher(
+ CarlaEgoVehicleControl, '/carla/ego/vehicle_control_cmd', 10)
self.goal_publisher = self.create_publisher(Pose, '/carla/ego/goal', 10)
# Subscribe to waypoints from CARLA
self.waypoints_subscription = self.create_subscription(
Path, '/carla/ego/waypoints', self.waypoints_callback, 10)
-
+
self.goal_point_x = 10
self.goal_point_y = 10
publish_goal(self.goal_point_x, self.goal_point_y)
-
def vehicle_state_callback(self, msg):
- mpc_core.v0 = msg.velocity
+ mpc_core.v0 = msg.velocity
# Extract theta/yaw/orientation of the car in the x-y plane from quaternion
quaternion = [msg.orientation.x, msg.orientation.y, msg.orientation.z, msg.orientation.w]
_, _, mpc_core.theta0 = euler_from_quaternion(quaternion)
-
def waypoints_callback(self, msg):
for pose_stamped in msg.poses:
|
src/action/model_predictive_control/model_predictive_control/mpc_node.py#L79
goal_msg.position.x = x
goal_msg.position.y = y
- goal_msg.position.z = 0.0
+ goal_msg.position.z = 0.0
goal_msg.orientation.x = 0.0
goal_msg.orientation.y = 0.0
goal_msg.orientation.z = 0.0
- goal_msg.orientation.w = 1.0
+ goal_msg.orientation.w = 1.0
self.goal_publisher.publish(goal_msg)
def start_main_loop(self):
- for i in range(self.mpc_core.SIM_DURATION - self.mpc_core.N): # Subtract N since we need to be able to predict N steps into the future
+ # Subtract N since we need to be able to predict N steps into the future
+ for i in range(self.mpc_core.SIM_DURATION - self.mpc_core.N):
steering_angle, throttle = self.mpc_core.compute_control(i)
-
+
control_msg = CarlaEgoVehicleControl()
control_msg.steer = steering_angle
control_msg.throttle = throttle
|
src/action/model_predictive_control/model_predictive_control/mpc_node.py#L106
if __name__ == '__main__':
- main()
\ No newline at end of file
+ main()
|
src/action/model_predictive_control/model_predictive_control/mpc.py#L41
def move_spectator_to_vehicle(vehicle, spectator, distance=10):
vehicle_location = vehicle.get_location()
# Set viewing angle to slightly above the vehicle
- spectator_transform = carla.Transform(vehicle_location + carla.Location(z=distance), carla.Rotation(pitch=-90))
+ spectator_transform = carla.Transform(
+ vehicle_location + carla.Location(z=distance), carla.Rotation(pitch=-90))
spectator.set_transform(spectator_transform)
|
src/action/model_predictive_control/model_predictive_control/mpc.py#L68
def generate_waypoint_relative_to_spawn(forward_offset=0, sideways_offset=0):
- waypoint_x = spawn_point.location.x + spawn_point.get_forward_vector().x * forward_offset + spawn_point.get_right_vector().x * sideways_offset
- waypoint_y = spawn_point.location.y + spawn_point.get_forward_vector().y * forward_offset + spawn_point.get_right_vector().y * sideways_offset
+ waypoint_x = spawn_point.location.x + spawn_point.get_forward_vector().x * forward_offset + \
+ spawn_point.get_right_vector().x * sideways_offset
+ waypoint_y = spawn_point.location.y + spawn_point.get_forward_vector().y * forward_offset + \
+ spawn_point.get_right_vector().y * sideways_offset
return ca.vertcat(waypoint_x, waypoint_y)
|
src/action/model_predictive_control/model_predictive_control/mpc.py#L107
# Objective
obj = 0
for k in range(N):
- Q = Q_base * (weight_increase_factor ** k) # Increase weight for each step in the prediction horizon
+ # Increase weight for each step in the prediction horizon
+ Q = Q_base * (weight_increase_factor ** k)
x_k = X[:, k] # Current state
u_k = U[:, k] # Current control input
|
src/action/model_predictive_control/model_predictive_control/mpc.py#L132
# Dynamics (Euler discretization using bicycle model)
for k in range(N):
- steering_angle_rad = U[0, k] * max_steering_angle_rad # Convert normalized steering angle to radians
+ # Convert normalized steering angle to radians
+ steering_angle_rad = U[0, k] * max_steering_angle_rad
opti.subject_to(X[:, k + 1] == X[:, k] + dt * ca.vertcat(
X[3, k] * ca.cos(X[2, k]),
|
src/simulation/carla_config/launch/carla.launch.py#L16
from launch.launch_description_sources import PythonLaunchDescriptionSource
# Use the second param (the launch argument) unless it is empty
+
def CheckParam(param1, param2):
try:
|
src/simulation/carla_notebooks/mpc_script.py#L41
def move_spectator_to_vehicle(vehicle, spectator, distance=10):
vehicle_location = vehicle.get_location()
# Set viewing angle to slightly above the vehicle
- spectator_transform = carla.Transform(vehicle_location + carla.Location(z=distance), carla.Rotation(pitch=-90))
+ spectator_transform = carla.Transform(
+ vehicle_location + carla.Location(z=distance), carla.Rotation(pitch=-90))
spectator.set_transform(spectator_transform)
|
src/simulation/carla_notebooks/mpc_script.py#L68
def generate_waypoint_relative_to_spawn(forward_offset=0, sideways_offset=0):
- waypoint_x = spawn_point.location.x + spawn_point.get_forward_vector().x * forward_offset + spawn_point.get_right_vector().x * sideways_offset
- waypoint_y = spawn_point.location.y + spawn_point.get_forward_vector().y * forward_offset + spawn_point.get_right_vector().y * sideways_offset
+ waypoint_x = spawn_point.location.x + spawn_point.get_forward_vector().x * forward_offset + \
+ spawn_point.get_right_vector().x * sideways_offset
+ waypoint_y = spawn_point.location.y + spawn_point.get_forward_vector().y * forward_offset + \
+ spawn_point.get_right_vector().y * sideways_offset
return ca.vertcat(waypoint_x, waypoint_y)
|
src/simulation/carla_notebooks/mpc_script.py#L107
# Objective
obj = 0
for k in range(N):
- Q = Q_base * (weight_increase_factor ** k) # Increase weight for each step in the prediction horizon
+ # Increase weight for each step in the prediction horizon
+ Q = Q_base * (weight_increase_factor ** k)
x_k = X[:, k] # Current state
u_k = U[:, k] # Current control input
|
src/simulation/carla_notebooks/mpc_script.py#L132
# Dynamics (Euler discretization using bicycle model)
for k in range(N):
- steering_angle_rad = U[0, k] * max_steering_angle_rad # Convert normalized steering angle to radians
+ # Convert normalized steering angle to radians
+ steering_angle_rad = U[0, k] * max_steering_angle_rad
opti.subject_to(X[:, k + 1] == X[:, k] + dt * ca.vertcat(
X[3, k] * ca.cos(X[2, k]),
|
src/simulation/carla_notebooks/boxconstraint.py#L6
"""
Bounded constraints lb <= x <= ub as polytopic constraints -Ix <= -b and Ix <= b. np.vstack(-I, I) forms the H matrix from III-D-b of the paper
"""
+
def __init__(self, lb=None, ub=None, plot_idxs=None):
"""
:param lb: dimwise list of lower bounds.
|
src/simulation/carla_notebooks/boxconstraint.py#L17
self.ub = np.array(ub, ndmin=2).reshape(-1, 1)
self.plot_idxs = plot_idxs
self.dim = self.lb.shape[0]
- assert (self.lb < self.ub).all(), "Lower bounds must be greater than corresponding upper bound for any given dimension"
+ assert (self.lb < self.ub).all(
+ ), "Lower bounds must be greater than corresponding upper bound for any given dimension"
self.setup_constraint_matrix()
def __str__(self): return "Lower bound: %s, Upper bound: %s" % (self.lb, self.ub)
|
src/simulation/carla_notebooks/boxconstraint.py#L67
return samples
def clip_to_bounds(self, samples):
- return np.clip(samples, self.lb, self.ub)
\ No newline at end of file
+ return np.clip(samples, self.lb, self.ub)
|
src/simulation/carla_notebooks/mpc_test.py#L5
## SETUP ##
client_name = os.environ.get("CLIENT_NAME", "DOES NOT EXIST")
if client_name == "DOES NOT EXIST":
- raise Exception("The environment variable for the container name of the carla server has not been set")
+ raise Exception(
+ "The environment variable for the container name of the carla server has not been set")
# Connect to the client and retrieve the world object
client = carla.Client(client_name, 2000)
world = client.get_world()
-spectator = world.get_spectator()
\ No newline at end of file
+spectator = world.get_spectator()
|
Setup Environment
Process completed with exit code 15.
|
Setup Environment
Detected infrastructure changes
|