constexpr scalar math.
#include "cste_math/cste_math.h"
namespace cm = cste_math;
constexpr float val = cm::sine(cm::pi<float> / 3.0f);
constexpr double val_2 = cm::square_root(3.0);
All you need is a compiler that implements c++20's std::is_is_constant_evaluated
.
cste_math is a header-only library. As such, all you need to do is make the
contents of the include
directory available to your compiler.
While the cmake project is primarily used to manage tests and
deployment, it's still set up as a proper target-exporting project. So you can
use either add_subdirectory(path/to/cste_math_source)
or find_package(cste_math)
and use target_link_libraries(my_target cste_math::cste_math)
.
#include "cste_math/cste_math.h"
void foo() {
constexpr float sq_2 = cste::square_root(2.0f);
}
When you use functions defined in the root cste
namespace, the library will
choose wether to use a constexpr
or an efficient runtime implementation based on context.
This is important because some constexpr
implementations are substantially slower than their
runtime equivalent.
At first glance, that doesn't sound liek a major issue. However, because of this, the library cannot guarantee that the result will always be the same.
If you find yourself in a situation where you need that guarantee for whatever reason, you can force
the use of the compile-time algorithm by using the cste::ct
namespace, at the cost of some performance.
#include "cste_math/cste_math.h"
void foo() {
constexpr float v_a = cste::exponential(0.1234f);
float v_b = cste::exponential(0.1234f);
assert(v_a == v_b); // WATCH OUT! Not necessarily the case!
}
void bar() {
constexpr float v_a = cste::exponential(0.1234f);
float v_b = cste::ct::exponential(0.1234f);
assert(v_a == v_b); // Guaranteed.
}
How | What |
---|---|
e<T> |
e |
pi<T> |
π |
two_pi<T> |
2π |
half_pi<T> |
π/2 |
quarter_pi<T> |
π/4 |
two_pi<T> |
2π |
How | What |
---|---|
T absolute(const T& x); |
|x| |
T exponential(const T& x); |
ex |
T modulo(const T& x, const T& y); |
remainder of x/y |
T power(const T& x, const T& y); |
xy |
T square_root(const T& x); |
√x |
How | What |
---|---|
bool is_inf(const T& x); |
Checks for infinity |
bool is_nan(const T& x); |
Checks for nan |
T sign(const T& x); |
negative: -1, positive: 1, zero: 0 |
How | What |
---|---|
T round_up(const T& x); |
round number up |
T round_down(const T& x); |
round number down |
T round(const T& x); |
round number to closest integer |
T truncate(const T& x); |
round number towards 0 |
T fractional(const T& x); |
The fractional part of the number |
How | What |
---|---|
T sine(const T& rad); |
sin(rad) |
T cosine(const T& rad); |
cos(rad) |
T tangent(const T& rad); |
tan(rad) |
File a bug! Or even better, add it yourself and send us a pull request. The library is currently being developped on a as-needed basis.
cste_math
is not guaranteed to return values that are going to 100%
match their standard library equivalent on all platforms. Having different functions names
helps in preventing people from assuming that could be the case.