Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Wild ω-semicategories #1229

Draft
wants to merge 110 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
110 commits
Select commit Hold shift + click to select a range
645fdb9
work on universal objects
Sep 24, 2024
c2abb43
Merge branch 'master' of github.com:UniMath/agda-unimath into globular
Sep 24, 2024
3e17ca8
adding infrastructure for globular types
EgbertRijke Sep 28, 2024
9bac61a
work
EgbertRijke Oct 9, 2024
4f6cead
Merge branch 'master' of github.com:UniMath/agda-unimath into globular
EgbertRijke Oct 9, 2024
72731cb
computation of the universal globular type, and correspondence of dep…
EgbertRijke Oct 11, 2024
bb31cac
reflexive globular maps
EgbertRijke Oct 13, 2024
f56cc6a
sections and pi
EgbertRijke Oct 13, 2024
70213c1
typo
EgbertRijke Oct 13, 2024
5e0fac9
Merge branch 'master' of github.com:UniMath/agda-unimath into globular
EgbertRijke Oct 13, 2024
90651f3
make pre-commit
EgbertRijke Oct 13, 2024
0285824
working towards duality of directed graphs
EgbertRijke Oct 14, 2024
d421336
duality for directed graphs
EgbertRijke Oct 15, 2024
c98f6e2
fibers and sections
EgbertRijke Oct 15, 2024
cbc1744
wild category of pointed types
EgbertRijke Oct 15, 2024
8c3e39f
mention the categorical laws, which were duplicated
EgbertRijke Oct 15, 2024
9c4ac74
small edits
EgbertRijke Oct 15, 2024
7629b7d
work
EgbertRijke Oct 17, 2024
45f2d8b
refactor reflexive and transitive globular types
EgbertRijke Oct 17, 2024
f445848
lots of work
EgbertRijke Oct 18, 2024
b9ea44a
maps
EgbertRijke Oct 18, 2024
cab0051
colax functors of noncoherent wild higher precategories
EgbertRijke Oct 18, 2024
fe3a463
Merge branch 'master' of github.com:UniMath/agda-unimath into globular
EgbertRijke Oct 18, 2024
b4a6ea7
Merge branch 'master' of github.com:UniMath/agda-unimath into globular
EgbertRijke Oct 18, 2024
b16dbd3
work
EgbertRijke Oct 18, 2024
c9f1f92
large (co)lax reflexive globular maps
EgbertRijke Oct 18, 2024
3e20e46
variations of transitive globular maps
EgbertRijke Oct 18, 2024
d958890
refacotr colax functors of noncoherent large wild precategories
EgbertRijke Oct 21, 2024
f2bec34
make pre-commit
EgbertRijke Oct 21, 2024
d019b03
fix concept macros
EgbertRijke Oct 21, 2024
66679f5
make pre-commit
EgbertRijke Oct 21, 2024
f340e81
reflexive graphs
EgbertRijke Oct 21, 2024
5236141
reflexive graphs
EgbertRijke Oct 21, 2024
7d88972
Merge branch 'master' of github.com:UniMath/agda-unimath into globular
EgbertRijke Oct 21, 2024
0773c07
make pre-commit
EgbertRijke Oct 21, 2024
04893a9
fix bugs
EgbertRijke Oct 21, 2024
f38ef28
work on broken links
EgbertRijke Oct 21, 2024
1cea2fb
make pre-commit
EgbertRijke Oct 21, 2024
fa04874
work on reflexive graphs
EgbertRijke Oct 22, 2024
cd31b20
bugs
EgbertRijke Oct 22, 2024
c12c18d
work
EgbertRijke Oct 23, 2024
a889dcd
Merge branch 'master' of github.com:UniMath/agda-unimath into globular
EgbertRijke Oct 23, 2024
6221b38
fibers of morphisms of reflexive graphs
EgbertRijke Oct 23, 2024
e5ad3f5
make pre-commit
EgbertRijke Oct 23, 2024
c8b9596
typo
EgbertRijke Oct 23, 2024
7851d96
Merge branch 'master' of github.com:UniMath/agda-unimath into globular
EgbertRijke Oct 24, 2024
3aabeb8
dependent products of reflexive graphs
EgbertRijke Oct 24, 2024
b39c097
minor edit
EgbertRijke Oct 24, 2024
077e3a9
Merge branch 'master' of github.com:UniMath/agda-unimath into globular
EgbertRijke Oct 25, 2024
d1e5448
review comments
EgbertRijke Oct 25, 2024
7d1a041
base change of universal dependent directed graph
EgbertRijke Oct 25, 2024
deaccdc
upstream master
EgbertRijke Nov 5, 2024
9336e8e
Merge branch 'master' of github.com:UniMath/agda-unimath into globular
EgbertRijke Nov 5, 2024
ec6eec8
some review comments
EgbertRijke Nov 5, 2024
9b9511e
-> laxly
EgbertRijke Nov 5, 2024
a0bda74
review comment
EgbertRijke Nov 5, 2024
3f48134
typo
EgbertRijke Nov 5, 2024
f070148
-> lax
EgbertRijke Nov 5, 2024
d72ea0b
concept
EgbertRijke Nov 5, 2024
a3a945c
pointwise extensions of families of globular types
EgbertRijke Nov 12, 2024
221e5d8
file for extensive globular types
EgbertRijke Nov 12, 2024
392b591
superglobular types
EgbertRijke Nov 14, 2024
d3789b6
superglobular types
EgbertRijke Nov 14, 2024
4626f95
uniform
EgbertRijke Nov 14, 2024
668bd20
structure
EgbertRijke Nov 14, 2024
45a4ea8
removing the itemization formatting in record
EgbertRijke Nov 14, 2024
d5a255b
unbolden text with added colon
EgbertRijke Nov 14, 2024
774d2ae
correcting an incorrect definition of discrete relations
EgbertRijke Nov 14, 2024
bf7aab7
Update src/foundation/discrete-relations.lagda.md
EgbertRijke Nov 14, 2024
79b6cf2
fix broken Agda reference
EgbertRijke Nov 14, 2024
0b304f7
Merge branch 'discrete-graphs' of github.com:EgbertRijke/agda-unimath…
EgbertRijke Nov 14, 2024
bc2b2be
factor out discrete globular types
EgbertRijke Nov 15, 2024
7d0819d
implementing discreteness via adjointness
EgbertRijke Nov 15, 2024
fdd6436
bugs
EgbertRijke Nov 15, 2024
cef5ecd
bugs
EgbertRijke Nov 15, 2024
3189352
adjointness for discrete directed graphs
EgbertRijke Nov 15, 2024
f123e98
Merge branch 'master' of github.com:UniMath/agda-unimath into globular
EgbertRijke Nov 15, 2024
444251a
edit discrete reflexive globular types
EgbertRijke Nov 15, 2024
8a74a9a
discrete globular types
EgbertRijke Nov 15, 2024
84b899d
ᵣ to refl
EgbertRijke Nov 15, 2024
5362869
partially revert long copattern matchings
EgbertRijke Nov 15, 2024
58b750e
make pre-commit
EgbertRijke Nov 15, 2024
4bb915b
discrete dependent reflexive graphs
EgbertRijke Nov 15, 2024
01fb7d6
make pre-commit
EgbertRijke Nov 15, 2024
092b19a
discrete dependent reflexive globular types
EgbertRijke Nov 15, 2024
c36005f
adjust text for discrete binary relations
EgbertRijke Nov 16, 2024
9cb7cf0
make pre-commit
EgbertRijke Nov 16, 2024
aae6781
Merge branch 'discrete-graphs' into globular
EgbertRijke Nov 16, 2024
ea117bb
moving files to globular types namespace
EgbertRijke Nov 17, 2024
44edc1e
fix imports
EgbertRijke Nov 17, 2024
bc5b08a
resolve merge conflicts
EgbertRijke Nov 17, 2024
ef70c90
make pre-commit
EgbertRijke Nov 17, 2024
3013c3f
resolve merge conflicts
EgbertRijke Nov 20, 2024
735ea9c
bug
EgbertRijke Nov 20, 2024
18b0121
make pre-commit
EgbertRijke Nov 20, 2024
8539d1a
noncoherent ω-semiprecategories
fredrik-bakke Nov 30, 2024
fb7439d
universal property isomorphisms
fredrik-bakke Dec 1, 2024
4eb4427
Idempotent points in noncoherent ω-semiprecategories
fredrik-bakke Dec 1, 2024
89d8853
wip homotopies of globular maps
fredrik-bakke Dec 1, 2024
a96af86
type arithmetic standard pullbacks
fredrik-bakke Dec 3, 2024
9008f71
pre-commit
fredrik-bakke Dec 3, 2024
005b2f4
composition of spans
fredrik-bakke Dec 3, 2024
b7830e5
Merge branch 'master' into wild-ω-semicategories
fredrik-bakke Dec 3, 2024
0365517
pre-commit
fredrik-bakke Dec 3, 2024
c578ff2
fix
fredrik-bakke Dec 3, 2024
edee3dd
wip
fredrik-bakke Jan 3, 2025
3948173
horizontal composition spans of spans
fredrik-bakke Jan 3, 2025
e9c9c8d
Merge branch 'master' into wild-ω-semicategories
fredrik-bakke Jan 4, 2025
00ebd7f
fix a typo
fredrik-bakke Jan 4, 2025
d992773
Merge branch 'master' into wild-ω-semicategories
fredrik-bakke Jan 8, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 9 additions & 7 deletions src/foundation/horizontal-composition-spans-of-spans.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,18 +57,20 @@ span of spans
| ↖ ∧
| α₀ ×_B β₀ |
∨ ↘ |
A <---------- G₀ ×_B I₀.
A <---------- G₀ ×_B I₀
```

from the available data.

**Note.** There are four equivalent, but judgmentally different choices of
spanning type `α₀ ×_B β₀` of the horizontal composite. We pick
spanning type `α₀ ×_B β₀` of the horizontal composite. We pick the composites

```text
α₀ ×_B β₀ ------> I
| ⌟ |
| |
F₀ ---------> B
α₀ ×_B β₀ ------> β
| ⌟
| I₀
α₀ --> F₀ --> B
```

as this choice avoids inversions of coherences as part of the construction,
Expand Down
1 change: 1 addition & 0 deletions src/globular-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ open import globular-types.fibers-globular-maps public
open import globular-types.globular-equivalences public
open import globular-types.globular-maps public
open import globular-types.globular-types public
open import globular-types.homotopies-globular-maps public
open import globular-types.large-colax-reflexive-globular-maps public
open import globular-types.large-colax-transitive-globular-maps public
open import globular-types.large-globular-maps public
Expand Down
94 changes: 79 additions & 15 deletions src/globular-types/binary-globular-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ open import foundation.universe-levels

open import globular-types.globular-maps
open import globular-types.globular-types
open import globular-types.points-globular-types
```

</details>
Expand Down Expand Up @@ -45,19 +46,82 @@ record
{l1 l2 l3 l4 l5 l6 : Level}
(G : Globular-Type l1 l2) (H : Globular-Type l3 l4)
(K : Globular-Type l5 l6) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6)
where
coinductive
field
0-cell-binary-globular-map :
0-cell-Globular-Type G → 0-cell-Globular-Type H →
0-cell-Globular-Type K
1-cell-binary-globular-map-binary-globular-map :
{x x' : 0-cell-Globular-Type G}
{y y' : 0-cell-Globular-Type H} →
binary-globular-map
( 1-cell-globular-type-Globular-Type G x x')
( 1-cell-globular-type-Globular-Type H y y')
( 1-cell-globular-type-Globular-Type K
( 0-cell-binary-globular-map x y)
( 0-cell-binary-globular-map x' y'))
where
coinductive
field
0-cell-binary-globular-map :
0-cell-Globular-Type G → 0-cell-Globular-Type H →
0-cell-Globular-Type K

1-cell-binary-globular-map-binary-globular-map :
{x x' : 0-cell-Globular-Type G}
{y y' : 0-cell-Globular-Type H} →
binary-globular-map
( 1-cell-globular-type-Globular-Type G x x')
( 1-cell-globular-type-Globular-Type H y y')
( 1-cell-globular-type-Globular-Type K
( 0-cell-binary-globular-map x y)
( 0-cell-binary-globular-map x' y'))

open binary-globular-map public
```

```agda
module _
{l1 l2 l3 l4 l5 l6 : Level}
{G : Globular-Type l1 l2} {H : Globular-Type l3 l4} {K : Globular-Type l5 l6}
(F : binary-globular-map G H K)
where

1-cell-binary-globular-map :
{x x' : 0-cell-Globular-Type G} {y y' : 0-cell-Globular-Type H} →
1-cell-Globular-Type G x x' →
1-cell-Globular-Type H y y' →
1-cell-Globular-Type K
( 0-cell-binary-globular-map F x y)
( 0-cell-binary-globular-map F x' y')
1-cell-binary-globular-map =
0-cell-binary-globular-map
( 1-cell-binary-globular-map-binary-globular-map F)

2-cell-binary-globular-map :
{x x' : 0-cell-Globular-Type G}
{y y' : 0-cell-Globular-Type H}
{f f' : 1-cell-Globular-Type G x x'}
{g g' : 1-cell-Globular-Type H y y'} →
2-cell-Globular-Type G f f' →
2-cell-Globular-Type H g g' →
2-cell-Globular-Type K
( 1-cell-binary-globular-map f g)
( 1-cell-binary-globular-map f' g')
2-cell-binary-globular-map =
0-cell-binary-globular-map
( 1-cell-binary-globular-map-binary-globular-map
( 1-cell-binary-globular-map-binary-globular-map F))
```

### Evaluating one of the arguments of a binary globular map

```agda
ev-left-binary-globular-map :
{l1 l2 l3 l4 l5 l6 : Level}
{G : Globular-Type l1 l2} {H : Globular-Type l3 l4} {K : Globular-Type l5 l6}
(F : binary-globular-map G H K) (x : point-Globular-Type G) → globular-map H K
0-cell-globular-map (ev-left-binary-globular-map F x) =
0-cell-binary-globular-map F (0-cell-point-Globular-Type x)
1-cell-globular-map-globular-map (ev-left-binary-globular-map F x) =
ev-left-binary-globular-map
( 1-cell-binary-globular-map-binary-globular-map F)
( 1-cell-point-point-Globular-Type x)

ev-right-binary-globular-map :
{l1 l2 l3 l4 l5 l6 : Level}
{G : Globular-Type l1 l2} {H : Globular-Type l3 l4} {K : Globular-Type l5 l6}
(F : binary-globular-map G H K) (x : point-Globular-Type H) → globular-map G K
0-cell-globular-map (ev-right-binary-globular-map F x) y =
0-cell-binary-globular-map F y (0-cell-point-Globular-Type x)
1-cell-globular-map-globular-map (ev-right-binary-globular-map F x) =
ev-right-binary-globular-map
( 1-cell-binary-globular-map-binary-globular-map F)
( 1-cell-point-point-Globular-Type x)
```
112 changes: 108 additions & 4 deletions src/globular-types/composition-structure-globular-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ open import foundation.universe-levels

open import globular-types.binary-globular-maps
open import globular-types.globular-types
open import globular-types.transitive-globular-types
```

</details>
Expand All @@ -36,10 +37,9 @@ consists of binary operations
- ∘ - : (𝑛+1)-Cell G y z → (𝑛+1)-Cell G x y → (𝑛+1)-Cell G x z,
```

each of which preserve all higher cells of the globular type `G`. Globular
composition structure is therefore a strengthening of the
[transitivity structure](globular-types.transitive-globular-types.md) on
globular types.
each of which preserve all higher cells of the globular type `G`. In comparison
to [transitivity structure](globular-types.transitive-globular-types.md) on
globular types, this also gives horizontal composition of higher cells.

## Definitions

Expand All @@ -66,5 +66,109 @@ record
composition-Globular-Type
( 1-cell-globular-type-Globular-Type G x y)

comp-1-cell-composition-Globular-Type :
{x y z : 0-cell-Globular-Type G} →
1-cell-Globular-Type G y z →
1-cell-Globular-Type G x y →
1-cell-Globular-Type G x z
comp-1-cell-composition-Globular-Type =
0-cell-binary-globular-map
comp-binary-globular-map-composition-Globular-Type

horizontal-comp-2-cell-composition-Globular-Type :
{x y z : 0-cell-Globular-Type G} →
{g g' : 1-cell-Globular-Type G y z} →
{f f' : 1-cell-Globular-Type G x y} →
2-cell-Globular-Type G g g' →
2-cell-Globular-Type G f f' →
2-cell-Globular-Type G
( comp-1-cell-composition-Globular-Type g f)
( comp-1-cell-composition-Globular-Type g' f')
horizontal-comp-2-cell-composition-Globular-Type =
1-cell-binary-globular-map
( comp-binary-globular-map-composition-Globular-Type)

horizontal-comp-3-cell-composition-Globular-Type' :
{x y z : 0-cell-Globular-Type G}
{g g' : 1-cell-Globular-Type G y z}
{f f' : 1-cell-Globular-Type G x y}
{α α' : 2-cell-Globular-Type G g g'}
{β β' : 2-cell-Globular-Type G f f'} →
3-cell-Globular-Type G α α' →
3-cell-Globular-Type G β β' →
3-cell-Globular-Type G
( horizontal-comp-2-cell-composition-Globular-Type α β)
( horizontal-comp-2-cell-composition-Globular-Type α' β')
horizontal-comp-3-cell-composition-Globular-Type' =
2-cell-binary-globular-map
comp-binary-globular-map-composition-Globular-Type

open composition-Globular-Type public
```

```agda
module _
{l1 l2 : Level} {G : Globular-Type l1 l2} (H : composition-Globular-Type G)
where

comp-2-cell-composition-Globular-Type :
{x y : 0-cell-Globular-Type G} →
{f g h : 1-cell-Globular-Type G x y} →
2-cell-Globular-Type G g h →
2-cell-Globular-Type G f g →
2-cell-Globular-Type G f h
comp-2-cell-composition-Globular-Type =
comp-1-cell-composition-Globular-Type
( composition-1-cell-globular-type-Globular-Type H)

horizontal-comp-3-cell-composition-Globular-Type :
{x y : 0-cell-Globular-Type G}
{f g h : 1-cell-Globular-Type G x y}
{α α' : 2-cell-Globular-Type G g h}
{β β' : 2-cell-Globular-Type G f g} →
3-cell-Globular-Type G α α' →
3-cell-Globular-Type G β β' →
3-cell-Globular-Type G
( comp-2-cell-composition-Globular-Type α β)
( comp-2-cell-composition-Globular-Type α' β')
horizontal-comp-3-cell-composition-Globular-Type =
horizontal-comp-2-cell-composition-Globular-Type
( composition-1-cell-globular-type-Globular-Type H)

module _
{l1 l2 : Level} {G : Globular-Type l1 l2} (H : composition-Globular-Type G)
where

comp-3-cell-composition-Globular-Type :
{x y : 0-cell-Globular-Type G} →
{f g : 1-cell-Globular-Type G x y} →
{α β γ : 2-cell-Globular-Type G f g} →
3-cell-Globular-Type G β γ →
3-cell-Globular-Type G α β →
3-cell-Globular-Type G α γ
comp-3-cell-composition-Globular-Type =
comp-2-cell-composition-Globular-Type
( composition-1-cell-globular-type-Globular-Type H)
```

## Properties

### Globular types with composition structure are transitive

```agda
is-transitive-composition-Globular-Type :
{l1 l2 : Level} {G : Globular-Type l1 l2} →
composition-Globular-Type G →
is-transitive-Globular-Type G
comp-1-cell-is-transitive-Globular-Type
( is-transitive-composition-Globular-Type H) =
comp-1-cell-composition-Globular-Type H
is-transitive-1-cell-globular-type-is-transitive-Globular-Type
( is-transitive-composition-Globular-Type H) =
is-transitive-composition-Globular-Type
( composition-1-cell-globular-type-Globular-Type H)
```

## See also

- [Noncoherent wild $\omega$-semiprecategories](wild-category-theory.noncoherent-wild-omega-semiprecategories.md)
Loading
Loading