Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Order theory from @spcfox's modal logic #1205

Merged
merged 15 commits into from
Oct 19, 2024
3 changes: 3 additions & 0 deletions src/order-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@ open import order-theory.lower-sets-large-posets public
open import order-theory.lower-types-preorders public
open import order-theory.maximal-chains-posets public
open import order-theory.maximal-chains-preorders public
open import order-theory.maximal-elements-posets public
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved
open import order-theory.meet-semilattices public
open import order-theory.meet-suplattices public
open import order-theory.nuclei-large-locales public
Expand Down Expand Up @@ -107,9 +108,11 @@ open import order-theory.top-elements-posets public
open import order-theory.top-elements-preorders public
open import order-theory.total-orders public
open import order-theory.total-preorders public
open import order-theory.upper-bounds-chains-posets public
open import order-theory.upper-bounds-large-posets public
open import order-theory.upper-bounds-posets public
open import order-theory.upper-sets-large-posets public
open import order-theory.well-founded-orders public
open import order-theory.well-founded-relations public
open import order-theory.zorns-lemma public
```
70 changes: 42 additions & 28 deletions src/order-theory/chains-posets.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,39 +7,42 @@ module order-theory.chains-posets where
<details><summary>Imports</summary>

```agda
open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.function-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import order-theory.chains-preorders
open import order-theory.posets
open import order-theory.subposets
```

</details>

## Idea

A **chain** in a poset `P` is a subtype `S` of `P` such that the ordering of `P`
restricted to `S` is linear.
A {{#concept "chain" Disambiguation="in a poset" Agda=chain-Poset}} in a
[poset](order-theory.posets.md) `P` is a [subtype](foundation-core.subtypes.md)
`S` of `P` such that the ordering of `P` restricted to `S` is
[linear](order-theory.total-orders.md).

## Definition

```agda
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved
module _
{l1 l2 : Level} (X : Poset l1 l2)
{l1 l2 l3 : Level} (X : Poset l1 l2) (S : Subposet l3 X)
where

is-chain-Subposet-Prop :
{l3 : Level} (S : type-Poset X → Prop l3) → Prop (l1 ⊔ l2 ⊔ l3)
is-chain-Subposet-Prop = is-chain-Subpreorder-Prop (preorder-Poset X)
is-chain-prop-Subposet : Prop (l1 ⊔ l2 ⊔ l3)
is-chain-prop-Subposet = is-chain-prop-Subpreorder (preorder-Poset X) S

is-chain-Subposet :
{l3 : Level} (S : type-Poset X → Prop l3) → UU (l1 ⊔ l2 ⊔ l3)
is-chain-Subposet = is-chain-Subpreorder (preorder-Poset X)
is-chain-Subposet : UU (l1 ⊔ l2 ⊔ l3)
is-chain-Subposet = is-chain-Subpreorder (preorder-Poset X) S

is-prop-is-chain-Subposet :
{l3 : Level} (S : type-Poset X → Prop l3) →
is-prop (is-chain-Subposet S)
is-prop-is-chain-Subposet = is-prop-is-chain-Subpreorder (preorder-Poset X)
is-prop-is-chain-Subposet : is-prop is-chain-Subposet
is-prop-is-chain-Subposet = is-prop-is-chain-Subpreorder (preorder-Poset X) S

chain-Poset :
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved
{l1 l2 : Level} (l : Level) (X : Poset l1 l2) → UU (l1 ⊔ l2 ⊔ lsuc l)
Expand All @@ -49,29 +52,40 @@ module _
{l1 l2 l3 : Level} (X : Poset l1 l2) (C : chain-Poset l3 X)
where

sub-preorder-chain-Poset : type-Poset X → Prop l3
sub-preorder-chain-Poset =
sub-preorder-chain-Preorder (preorder-Poset X) C
subposet-chain-Poset : Subposet l3 X
subposet-chain-Poset =
subpreorder-chain-Preorder (preorder-Poset X) C

is-chain-subposet-chain-Poset :
is-chain-Subposet X subposet-chain-Poset
is-chain-subposet-chain-Poset =
is-chain-subpreorder-chain-Preorder (preorder-Poset X) C

type-chain-Poset : UU (l1 ⊔ l3)
type-chain-Poset = type-chain-Preorder (preorder-Poset X) C

inclusion-type-chain-Poset : type-chain-Poset → type-Poset X
inclusion-type-chain-Poset =
inclusion-subpreorder-chain-Preorder (preorder-Poset X) C

module _
{l1 l2 : Level} (X : Poset l1 l2)
{l1 l2 l3 l4 : Level} (X : Poset l1 l2)
(C : chain-Poset l3 X) (D : chain-Poset l4 X)
where

inclusion-chain-Poset-Prop :
{l3 l4 : Level} → chain-Poset l3 X → chain-Poset l4 X →
Prop (l1 ⊔ l3 ⊔ l4)
inclusion-chain-Poset-Prop = inclusion-chain-Preorder-Prop (preorder-Poset X)
inclusion-chain-prop-Poset : Prop (l1 ⊔ l3 ⊔ l4)
inclusion-chain-prop-Poset =
inclusion-prop-chain-Preorder (preorder-Poset X) C D

inclusion-chain-Poset :
{l3 l4 : Level} → chain-Poset l3 X → chain-Poset l4 X → UU (l1 ⊔ l3 ⊔ l4)
inclusion-chain-Poset = inclusion-chain-Preorder (preorder-Poset X)
inclusion-chain-Poset : UU (l1 ⊔ l3 ⊔ l4)
inclusion-chain-Poset = inclusion-chain-Preorder (preorder-Poset X) C D

is-prop-inclusion-chain-Poset :
{l3 l4 : Level} (C : chain-Poset l3 X) (D : chain-Poset l4 X) →
is-prop (inclusion-chain-Poset C D)
is-prop-inclusion-chain-Poset : is-prop inclusion-chain-Poset
is-prop-inclusion-chain-Poset =
is-prop-inclusion-chain-Preorder (preorder-Poset X)
is-prop-inclusion-chain-Preorder (preorder-Poset X) C D
```

## External links

- [chain#in order theory](https://ncatlab.org/nlab/show/chain#in_order_theory)
at $n$Lab
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved
72 changes: 39 additions & 33 deletions src/order-theory/chains-preorders.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,30 +21,27 @@ open import order-theory.total-preorders

## Idea

A **chain** in a preorder `P` is a subtype `S` of `P` such that the ordering of
`P` restricted to `S` is linear.
A {{#concept "chain" Disambiguation="in a preorder" Agda=chain-Preorder}} in a
[preorder](order-theory.preorders.md) `P` is a
[subtype](foundation-core.subtypes.md) `S` of `P` such that the ordering of `P`
restricted to `S` is [linear](order-theory.total-preorders.md).

## Definition

fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved
```agda
module _
{l1 l2 : Level} (X : Preorder l1 l2)
{l1 l2 l3 : Level} (X : Preorder l1 l2) (S : Subpreorder l3 X)
where

is-chain-Subpreorder-Prop :
{l3 : Level} (S : type-Preorder X → Prop l3) → Prop (l1 ⊔ l2 ⊔ l3)
is-chain-Subpreorder-Prop S =
is-chain-prop-Subpreorder : Prop (l1 ⊔ l2 ⊔ l3)
is-chain-prop-Subpreorder =
is-total-Preorder-Prop (preorder-Subpreorder X S)

is-chain-Subpreorder :
{l3 : Level} (S : type-Preorder X → Prop l3) → UU (l1 ⊔ l2 ⊔ l3)
is-chain-Subpreorder S = type-Prop (is-chain-Subpreorder-Prop S)
is-chain-Subpreorder : UU (l1 ⊔ l2 ⊔ l3)
is-chain-Subpreorder = type-Prop is-chain-prop-Subpreorder

is-prop-is-chain-Subpreorder :
{l3 : Level} (S : type-Preorder X → Prop l3) →
is-prop (is-chain-Subpreorder S)
is-prop-is-chain-Subpreorder S =
is-prop-type-Prop (is-chain-Subpreorder-Prop S)
is-prop-is-chain-Subpreorder : is-prop is-chain-Subpreorder
is-prop-is-chain-Subpreorder = is-prop-type-Prop is-chain-prop-Subpreorder

chain-Preorder :
{l1 l2 : Level} (l : Level) (X : Preorder l1 l2) → UU (l1 ⊔ l2 ⊔ lsuc l)
Expand All @@ -55,32 +52,41 @@ module _
{l1 l2 l3 : Level} (X : Preorder l1 l2) (C : chain-Preorder l3 X)
where

sub-preorder-chain-Preorder : type-Preorder X → Prop l3
sub-preorder-chain-Preorder = pr1 C
subpreorder-chain-Preorder : Subpreorder l3 X
subpreorder-chain-Preorder = pr1 C

is-chain-subpreorder-chain-Preorder :
is-chain-Subpreorder X subpreorder-chain-Preorder
is-chain-subpreorder-chain-Preorder = pr2 C

type-chain-Preorder : UU (l1 ⊔ l3)
type-chain-Preorder = type-subtype sub-preorder-chain-Preorder
type-chain-Preorder = type-subtype subpreorder-chain-Preorder

inclusion-subpreorder-chain-Preorder : type-chain-Preorder → type-Preorder X
inclusion-subpreorder-chain-Preorder =
inclusion-subtype subpreorder-chain-Preorder

module _
{l1 l2 : Level} (X : Preorder l1 l2)
{l1 l2 l3 l4 : Level} (X : Preorder l1 l2)
(C : chain-Preorder l3 X) (D : chain-Preorder l4 X)
where

inclusion-chain-Preorder-Prop :
{l3 l4 : Level} → chain-Preorder l3 X → chain-Preorder l4 X →
Prop (l1 ⊔ l3 ⊔ l4)
inclusion-chain-Preorder-Prop C D =
inclusion-Subpreorder-Prop X
( sub-preorder-chain-Preorder X C)
( sub-preorder-chain-Preorder X D)
inclusion-prop-chain-Preorder : Prop (l1 ⊔ l3 ⊔ l4)
inclusion-prop-chain-Preorder =
inclusion-prop-Subpreorder X
( subpreorder-chain-Preorder X C)
( subpreorder-chain-Preorder X D)

inclusion-chain-Preorder :
{l3 l4 : Level} → chain-Preorder l3 X → chain-Preorder l4 X →
UU (l1 ⊔ l3 ⊔ l4)
inclusion-chain-Preorder C D = type-Prop (inclusion-chain-Preorder-Prop C D)
inclusion-chain-Preorder : UU (l1 ⊔ l3 ⊔ l4)
inclusion-chain-Preorder = type-Prop inclusion-prop-chain-Preorder

is-prop-inclusion-chain-Preorder :
{l3 l4 : Level} (C : chain-Preorder l3 X) (D : chain-Preorder l4 X) →
is-prop (inclusion-chain-Preorder C D)
is-prop-inclusion-chain-Preorder C D =
is-prop-type-Prop (inclusion-chain-Preorder-Prop C D)
is-prop inclusion-chain-Preorder
is-prop-inclusion-chain-Preorder =
is-prop-type-Prop inclusion-prop-chain-Preorder
```

## External links

- [chain#in order theory](https://ncatlab.org/nlab/show/chain#in_order_theory)
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved
at $n$Lab
2 changes: 1 addition & 1 deletion src/order-theory/finite-preorders.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,7 @@ module _
pr2 is-finite-preorder-Preorder-𝔽 = is-decidable-leq-Preorder-𝔽
```

### Decidable sub-preorders of finite preorders
### Decidable subpreorders of finite preorders

```agda
module _
Expand Down
2 changes: 1 addition & 1 deletion src/order-theory/maximal-chains-preorders.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ module _
( λ D →
function-Prop
( inclusion-chain-Preorder X C D)
( inclusion-chain-Preorder-Prop X D C))
( inclusion-prop-chain-Preorder X D C))

is-maximal-chain-Preorder :
{l3 : Level} → chain-Preorder l3 X → UU (l1 ⊔ l2 ⊔ lsuc l3)
Expand Down
55 changes: 55 additions & 0 deletions src/order-theory/maximal-elements-posets.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
# Maximal elements in posets

```agda
module order-theory.maximal-elements-posets where
```

<details><summary>Imports</summary>

```agda
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import foundation-core.identity-types
open import foundation-core.propositions

open import order-theory.posets
```

</details>

## Idea

A
{{#concept "maximal" Disambiguation="element in a poset" WD="maximal and minimal elements" WDID=Q1475294 Agda=is-maximal-element-Poset}}
element in a [poset](order-theory.posets.md) is an element `y` such that every
other element `x` that is greater than it `y ≤ x` is
[equal](foundation-core.identity-types.md) to it `y = x`.

## Definition

```agda
module _
{l1 l2 : Level} (X : Poset l1 l2)
where

is-maximal-element-prop-Poset : type-Poset X → Prop (l1 ⊔ l2)
is-maximal-element-prop-Poset x =
Π-Prop
( type-Poset X)
( λ y → function-Prop (leq-Poset X x y) (y = x , is-set-type-Poset X y x))

is-maximal-element-Poset : type-Poset X → UU (l1 ⊔ l2)
is-maximal-element-Poset x = type-Prop (is-maximal-element-prop-Poset x)

is-prop-is-maximal-element-Poset :
(x : type-Poset X) → is-prop (is-maximal-element-Poset x)
is-prop-is-maximal-element-Poset x =
is-prop-type-Prop (is-maximal-element-prop-Poset x)
```

## External links

- [Maximal and minimal elements](https://en.wikipedia.org/wiki/Maximal_and_minimal_elements)
at Wikipedia
- [maximal element](https://ncatlab.org/nlab/show/maximal+element) at $n$Lab
35 changes: 18 additions & 17 deletions src/order-theory/subposets.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,8 +30,12 @@ ordering on `P`, subposets have again the structure of a poset.
### Subposets

```agda
Subposet :
{l1 l2 : Level} (l3 : Level) → Poset l1 l2 → UU (l1 ⊔ lsuc l3)
Subposet l3 P = Subpreorder l3 (preorder-Poset P)

module _
{l1 l2 l3 : Level} (X : Poset l1 l2) (S : type-Poset X → Prop l3)
{l1 l2 l3 : Level} (X : Poset l1 l2) (S : Subposet l3 X)
where

type-Subposet : UU (l1 ⊔ l3)
Expand Down Expand Up @@ -72,21 +76,20 @@ module _
pr2 poset-Subposet = antisymmetric-leq-Subposet
```

### Inclusion of sub-posets
### Inclusion of subposets

```agda
module _
{l1 l2 : Level} (X : Poset l1 l2)
where

module _
{l3 l4 : Level} (S : type-Poset X → Prop l3)
(T : type-Poset X → Prop l4)
{l3 l4 : Level} (S : Subposet l3 X) (T : Subposet l4 X)
where

inclusion-Subposet-Prop : Prop (l1 ⊔ l3 ⊔ l4)
inclusion-Subposet-Prop =
inclusion-Subpreorder-Prop (preorder-Poset X) S T
inclusion-prop-Subposet : Prop (l1 ⊔ l3 ⊔ l4)
inclusion-prop-Subposet =
inclusion-prop-Subpreorder (preorder-Poset X) S T

inclusion-Subposet : UU (l1 ⊔ l3 ⊔ l4)
inclusion-Subposet = inclusion-Subpreorder (preorder-Poset X) S T
Expand All @@ -96,23 +99,21 @@ module _
is-prop-inclusion-Subpreorder (preorder-Poset X) S T

refl-inclusion-Subposet :
{l3 : Level} (S : type-Poset X → Prop l3) →
inclusion-Subposet S S
{l3 : Level} (S : Subposet l3 X) → inclusion-Subposet S S
refl-inclusion-Subposet = refl-inclusion-Subpreorder (preorder-Poset X)

transitive-inclusion-Subposet :
{l3 l4 l5 : Level} (S : type-Poset X → Prop l3)
(T : type-Poset X → Prop l4)
(U : type-Poset X → Prop l5) →
{l3 l4 l5 : Level}
(S : Subposet l3 X) (T : Subposet l4 X) (U : Subposet l5 X) →
inclusion-Subposet T U →
inclusion-Subposet S T →
inclusion-Subposet S U
transitive-inclusion-Subposet =
transitive-inclusion-Subpreorder (preorder-Poset X)

sub-poset-Preorder : (l : Level) → Preorder (l1 ⊔ lsuc l) (l1 ⊔ l)
pr1 (sub-poset-Preorder l) = type-Poset X → Prop l
pr1 (pr2 (sub-poset-Preorder l)) = inclusion-Subposet-Prop
pr1 (pr2 (pr2 (sub-poset-Preorder l))) = refl-inclusion-Subposet
pr2 (pr2 (pr2 (sub-poset-Preorder l))) = transitive-inclusion-Subposet
subposet-Preorder : (l : Level) → Preorder (l1 ⊔ lsuc l) (l1 ⊔ l)
pr1 (subposet-Preorder l) = Subposet l X
pr1 (pr2 (subposet-Preorder l)) = inclusion-prop-Subposet
pr1 (pr2 (pr2 (subposet-Preorder l))) = refl-inclusion-Subposet
pr2 (pr2 (pr2 (subposet-Preorder l))) = transitive-inclusion-Subposet
```
Loading
Loading