Skip to content

Commit

Permalink
Symmetric core of a relation (#754)
Browse files Browse the repository at this point in the history
In this PR we construct the symmetric core of a type valued relation and
show that it is the right adjoint of the restriction functor from
symmetric relations to relations. Everything we do in this PR is fully
coherent and untruncated.

---------

Co-authored-by: Fredrik Bakke <[email protected]>
  • Loading branch information
EgbertRijke and fredrik-bakke authored Sep 14, 2023
1 parent 50fdf54 commit adf864e
Show file tree
Hide file tree
Showing 22 changed files with 394 additions and 81 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -86,13 +86,13 @@ htpy-precomp-Π H C h x = apd h (H x)
abstract
is-equiv-map-equiv-Π-equiv-family :
{l1 l2 l3 : Level} {I : UU l1} {A : I UU l2} {B : I UU l3}
(f : (i : I) A i B i) (is-equiv-f : is-fiberwise-equiv f)
{f : (i : I) A i B i} (is-equiv-f : is-fiberwise-equiv f)
is-equiv (map-Π f)
is-equiv-map-equiv-Π-equiv-family f is-equiv-f =
is-equiv-map-equiv-Π-equiv-family is-equiv-f =
is-equiv-is-contr-map
( λ g
is-contr-equiv' _
( compute-fiber-map-Π f g)
( compute-fiber-map-Π _ g)
( is-contr-Π (λ i is-contr-map-is-equiv (is-equiv-f i) (g i))))

equiv-Π-equiv-family :
Expand All @@ -101,7 +101,6 @@ equiv-Π-equiv-family :
pr1 (equiv-Π-equiv-family e) = map-Π (λ i map-equiv (e i))
pr2 (equiv-Π-equiv-family e) =
is-equiv-map-equiv-Π-equiv-family
( λ i map-equiv (e i))
( λ i is-equiv-map-equiv (e i))
```

Expand All @@ -121,7 +120,7 @@ is-equiv-precomp-Π-fiber-condition {f = f} {C} H =
is-equiv-comp
( map-reduce-Π-fiber f (λ b u C b))
( map-Π (λ b u t u))
( is-equiv-map-equiv-Π-equiv-family (λ b u t u) H)
( is-equiv-map-equiv-Π-equiv-family H)
( is-equiv-map-reduce-Π-fiber f (λ b u C b))
```

Expand Down Expand Up @@ -153,7 +152,7 @@ abstract

```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A B)
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {f : A B}
(H : is-equiv f) (C : B UU l3)
where

Expand Down Expand Up @@ -187,7 +186,7 @@ equiv-precomp-Π :
(C : B UU l3) ((b : B) C b) ≃ ((a : A) C (map-equiv e a))
pr1 (equiv-precomp-Π e C) = precomp-Π (map-equiv e) C
pr2 (equiv-precomp-Π e C) =
is-equiv-precomp-Π-is-equiv (map-equiv e) (is-equiv-map-equiv e) C
is-equiv-precomp-Π-is-equiv (is-equiv-map-equiv e) C
```

## See also
Expand Down
2 changes: 1 addition & 1 deletion src/foundation-core/functoriality-function-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,7 @@ abstract
(C : UU l3) is-equiv (precomp f C)
is-equiv-precomp-is-equiv f is-equiv-f =
is-equiv-precomp-is-equiv-precomp-Π f
( is-equiv-precomp-Π-is-equiv f is-equiv-f)
( is-equiv-precomp-Π-is-equiv is-equiv-f)

is-equiv-precomp-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A ≃ B)
Expand Down
1 change: 1 addition & 0 deletions src/foundation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -255,6 +255,7 @@ open import foundation.subtypes public
open import foundation.subuniverses public
open import foundation.surjective-maps public
open import foundation.symmetric-binary-relations public
open import foundation.symmetric-cores-binary-relations public
open import foundation.symmetric-difference public
open import foundation.symmetric-identity-types public
open import foundation.symmetric-operations public
Expand Down
1 change: 0 additions & 1 deletion src/foundation/descent-equivalences.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,6 @@ module _
is-equiv-i is-equiv-k is-pb-rectangle =
is-pullback-is-fiberwise-equiv-map-fiber-cone j h c
( map-inv-is-equiv-precomp-Π-is-equiv
( i)
( is-equiv-i)
( λ y is-equiv (map-fiber-cone j h c y))
( λ x is-equiv-left-factor-htpy
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/equivalence-extensionality.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ module _
( is-equiv-tot-is-fiberwise-equiv
( λ h funext (h ∘ f) id))
( is-contr-map-is-equiv
(( is-equiv-precomp-Π-is-equiv f H) (λ y A))
( is-equiv-precomp-Π-is-equiv H (λ y A))
( id))))
( H)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -71,13 +71,9 @@ module _
( map-equiv (f (map-inv-is-equiv (is-equiv-map-equiv e) a)))))
( precomp-Π (map-inv-is-equiv (is-equiv-map-equiv e)) B')
( is-equiv-precomp-Π-is-equiv
( map-inv-is-equiv (is-equiv-map-equiv e))
( is-equiv-map-inv-is-equiv (is-equiv-map-equiv e))
( B'))
( is-equiv-map-equiv-Π-equiv-family
( λ a
( tr B (is-section-map-inv-is-equiv (is-equiv-map-equiv e) a)) ∘
( map-equiv (f (map-inv-is-equiv (is-equiv-map-equiv e) a))))
( λ a
is-equiv-comp
( tr B (is-section-map-inv-is-equiv (is-equiv-map-equiv e) a))
Expand Down Expand Up @@ -291,8 +287,8 @@ abstract
is-equiv (map-automorphism-Π e f)
is-equiv-map-automorphism-Π {B = B} e f =
is-equiv-comp _ _
( is-equiv-precomp-Π-is-equiv _ (is-equiv-map-equiv e) B)
( is-equiv-map-equiv-Π-equiv-family _
( is-equiv-precomp-Π-is-equiv (is-equiv-map-equiv e) B)
( is-equiv-map-equiv-Π-equiv-family
( λ a is-equiv-map-inv-is-equiv (is-equiv-map-equiv (f a))))

automorphism-Π :
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/global-choice.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ abstract
no-global-choice :
{l : Level} ¬ (Global-Choice l)
no-global-choice f =
no-section-type-UU-Fin-two-ℕ
no-section-type-2-Element-Type
( λ X
f (pr1 X) (map-trunc-Prop (λ e map-equiv e (zero-Fin 1)) (pr2 X)))
```
4 changes: 2 additions & 2 deletions src/foundation/homotopies.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,7 @@ module _
is-equiv-left-transpose-htpy-concat :
is-equiv (left-transpose-htpy-concat H K L)
is-equiv-left-transpose-htpy-concat =
is-equiv-map-equiv-Π-equiv-family _
is-equiv-map-equiv-Π-equiv-family
( λ x is-equiv-left-transpose-eq-concat (H x) (K x) (L x))

equiv-left-transpose-htpy-concat : ((H ∙h K) ~ L) ≃ (K ~ ((inv-htpy H) ∙h L))
Expand All @@ -132,7 +132,7 @@ module _
is-equiv-right-transpose-htpy-concat :
is-equiv (right-transpose-htpy-concat H K L)
is-equiv-right-transpose-htpy-concat =
is-equiv-map-equiv-Π-equiv-family _
is-equiv-map-equiv-Π-equiv-family
( λ x is-equiv-right-transpose-eq-concat (H x) (K x) (L x))

equiv-right-transpose-htpy-concat : ((H ∙h K) ~ L) ≃ (H ~ (L ∙h (inv-htpy K)))
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/law-of-excluded-middle.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,5 +50,5 @@ abstract
no-global-decidability :
{l : Level} ¬ ((X : UU l) is-decidable X)
no-global-decidability {l} d =
is-not-decidable-type-UU-Fin-two-ℕ (λ X d (pr1 X))
is-not-decidable-type-2-Element-Type (λ X d (pr1 X))
```
4 changes: 1 addition & 3 deletions src/foundation/pullbacks.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -442,7 +442,6 @@ htpy-eq-square-refl-htpy :
tr-tr-c = c' htpy-parallel-cone (refl-htpy' f) (refl-htpy' g) c c'
htpy-eq-square-refl-htpy f g c c' =
map-inv-is-equiv-precomp-Π-is-equiv
( λ (p : Id c c') (tr-tr-refl-htpy-cone f g c) ∙ p)
( is-equiv-concat (tr-tr-refl-htpy-cone f g c) c')
( λ p htpy-parallel-cone (refl-htpy' f) (refl-htpy' g) c c')
( htpy-eq-square f g c c')
Expand All @@ -455,7 +454,6 @@ comp-htpy-eq-square-refl-htpy :
( htpy-eq-square f g c c')
comp-htpy-eq-square-refl-htpy f g c c' =
is-section-map-inv-is-equiv-precomp-Π-is-equiv
( λ (p : Id c c') (tr-tr-refl-htpy-cone f g c) ∙ p)
( is-equiv-concat (tr-tr-refl-htpy-cone f g c) c')
( λ p htpy-parallel-cone (refl-htpy' f) (refl-htpy' g) c c')
( htpy-eq-square f g c c')
Expand Down Expand Up @@ -694,7 +692,7 @@ abstract
( gap (map-Π f) (map-Π g) (cone-Π f g c))
( triangle-map-canonical-pullback-Π f g c)
( is-equiv-map-canonical-pullback-Π f g)
( is-equiv-map-equiv-Π-equiv-family _ is-pb-c)
( is-equiv-map-equiv-Π-equiv-family is-pb-c)
```

```agda
Expand Down
2 changes: 0 additions & 2 deletions src/foundation/surjective-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -273,15 +273,13 @@ abstract
( λ h y (h y) ∘ unit-trunc-Prop)
( λ h y const (type-trunc-Prop (fiber f y)) (type-Prop (P y)) (h y))
( is-equiv-map-equiv-Π-equiv-family
( λ y p z p)
( λ y
is-equiv-diagonal-is-contr
( is-proof-irrelevant-is-prop
( is-prop-type-trunc-Prop)
( is-surj-f y))
( type-Prop (P y))))
( is-equiv-map-equiv-Π-equiv-family
( λ b g g ∘ unit-trunc-Prop)
( λ b is-propositional-truncation-trunc-Prop (fiber f b) (P b))))
( is-equiv-map-reduce-Π-fiber f ( λ y z type-Prop (P y)))

Expand Down
139 changes: 139 additions & 0 deletions src/foundation/symmetric-cores-binary-relations.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
# Symmetric cores of binary relations

```agda
{-# OPTIONS --allow-unsolved-metas #-}

module foundation.symmetric-cores-binary-relations where
```

<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-functions
open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.functoriality-dependent-function-types
open import foundation.functoriality-function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.mere-equivalences
open import foundation.symmetric-binary-relations
open import foundation.transport-along-identifications
open import foundation.type-arithmetic-dependent-function-types
open import foundation.universal-property-dependent-pair-types
open import foundation.universal-property-identity-systems
open import foundation.universe-levels
open import foundation.unordered-pairs

open import univalent-combinatorics.2-element-types
open import univalent-combinatorics.standard-finite-types
open import univalent-combinatorics.universal-property-standard-finite-types
```

</details>

## Idea

The **symmetric core** of a [binary relation](foundation.binary-relations.md)
`R : A A 𝒰` on a type `A` is a
[symmetric binary relation](foundation.symmetric-binary-relations.md) `core R`
equipped with a counit

```text
(x y : A) core R {x , y} R x y
```

that satisfies the universal property of the symmetric core, i.e., it satisfies
the property that for any symmetric relation `S : unordered-pair A 𝒰`, the
precomposition function

```text
hom-Symmetric-Relation S (core R) hom-Relation (rel S) R
```

is an [equivalence](foundation-core.equivalences.md). The symmetric core of a
binary relation `R` is defined as the relation

```text
core R (I,a) := (i : I) R (a i) (a -i)
```

where `-i` is the element of the
[2-element type](univalent-combinatorics.2-element-types.md) obtained by
applying the swap [involution](foundation.involutions.md) to `i`. With this
definition it is easy to see that the universal property of the adjunction
should hold, since we have

```text
((I,a) S (I,a) core R (I,a)) ≃ ((x y : A) S {x,y} R x y).
```

## Definitions

### The symmetric core of a binary relation

```agda
module _
{l1 l2 : Level} {A : UU l1} (R : Relation l2 A)
where

symmetric-core-Relation : Symmetric-Relation l2 A
symmetric-core-Relation p =
(i : type-unordered-pair p)
R (element-unordered-pair p i) (other-element-unordered-pair p i)

counit-symmetric-core-Relation :
{x y : A}
relation-Symmetric-Relation symmetric-core-Relation x y R x y
counit-symmetric-core-Relation {x} {y} r =
tr
( R x)
( compute-other-element-standard-unordered-pair x y (zero-Fin 1))
( r (zero-Fin 1))
```

## Properties

### The universal property of the symmetric core of a binary relation

```agda
module _
{l1 l2 l3 : Level} {A : UU l1} (R : Relation l2 A)
(S : Symmetric-Relation l3 A)
where

map-universal-property-symmetric-core-Relation :
hom-Symmetric-Relation S (symmetric-core-Relation R)
hom-Relation (relation-Symmetric-Relation S) R
map-universal-property-symmetric-core-Relation f x y s =
counit-symmetric-core-Relation R (f (standard-unordered-pair x y) s)

equiv-universal-property-symmetric-core-Relation :
hom-Symmetric-Relation S (symmetric-core-Relation R) ≃
hom-Relation (relation-Symmetric-Relation S) R
equiv-universal-property-symmetric-core-Relation =
( equiv-Π-equiv-family
( λ x
equiv-Π-equiv-family
( λ y
equiv-postcomp
( S (standard-unordered-pair x y))
( equiv-tr
( R _)
( compute-other-element-standard-unordered-pair x y
( zero-Fin 1)))))) ∘e
( equiv-dependent-universal-property-pointed-unordered-pairs
( λ p i
S p
R (element-unordered-pair p i) (other-element-unordered-pair p i))) ∘e
( equiv-Π-equiv-family (λ p equiv-swap-Π))

universal-property-symmetric-core-Relation :
is-equiv map-universal-property-symmetric-core-Relation
universal-property-symmetric-core-Relation =
is-equiv-map-equiv
( equiv-universal-property-symmetric-core-Relation)
```
9 changes: 9 additions & 0 deletions src/foundation/universal-property-identity-systems.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,15 @@ module _
( λ u P (pr1 u) (pr2 u)))
( is-equiv-ev-pair)

equiv-dependent-universal-property-identity-system-is-torsorial :
is-torsorial B
{l : Level} {C : (x : A) B x UU l}
((x : A) (y : B x) C x y) ≃ C a b
pr1 (equiv-dependent-universal-property-identity-system-is-torsorial H) =
ev-refl-identity-system b
pr2 (equiv-dependent-universal-property-identity-system-is-torsorial H) =
dependent-universal-property-identity-system-is-torsorial H _

is-torsorial-dependent-universal-property-identity-system :
({l3 : Level} dependent-universal-property-identity-system l3 {A} {B} b)
is-torsorial B
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -346,6 +346,5 @@ abstract
( λ h a p' h (f a) p')
( is-ptr-f (pair (type-hom-Prop P' Q) (is-prop-type-hom-Prop P' Q)))
( is-equiv-map-equiv-Π-equiv-family
( λ a g a' g (f' a'))
( λ a is-ptr-f' Q)))
```
Loading

0 comments on commit adf864e

Please sign in to comment.