Skip to content

Commit

Permalink
Beyond foundation (#751)
Browse files Browse the repository at this point in the history
In this PR I pulled changes I made in the `foundation` and
`foundation-core` folders in the Beyond finite sets PR #623. The goal is
to create something mergeable without having to wait for the other
unfinished changes in #623. Let's see what monstrosity I created.
  • Loading branch information
EgbertRijke authored Sep 12, 2023
1 parent ebf3f17 commit 58eb0fc
Show file tree
Hide file tree
Showing 53 changed files with 1,468 additions and 611 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ open import finite-group-theory.finite-type-groups
open import finite-group-theory.sign-homomorphism
open import finite-group-theory.transpositions

open import foundation.action-on-equivalences-families-over-subuniverses
open import foundation.action-on-equivalences-type-families-over-subuniverses
open import foundation.action-on-identifications-functions
open import foundation.contractible-types
open import foundation.dependent-pair-types
Expand All @@ -29,6 +29,7 @@ open import foundation.negation
open import foundation.propositional-truncations
open import foundation.raising-universe-levels
open import foundation.transport-along-identifications
open import foundation.type-theoretic-principle-of-choice
open import foundation.unit-type
open import foundation.universe-levels

Expand Down Expand Up @@ -69,7 +70,7 @@ module _
( star)
( transposition Y))
( map-equiv
( action-equiv-family-on-subuniverse
( action-equiv-family-over-subuniverse
( mere-equiv-Prop (Fin (n +ℕ 2)))
( orientation-Complete-Undirected-Graph (n +ℕ 2))
( raise l (Fin (n +ℕ 2)) ,
Expand Down Expand Up @@ -110,17 +111,19 @@ module _
preserves-id-equiv-orientation-complete-undirected-graph-equiv
( n +ℕ 2)}
{ y =
( action-equiv-family-on-subuniverse
( action-equiv-family-over-subuniverse
( mere-equiv-Prop (Fin (n +ℕ 2)))
( orientation-Complete-Undirected-Graph (n +ℕ 2))) ,
( preserves-id-equiv-action-equiv-family-on-subuniverse
( compute-id-equiv-action-equiv-family-over-subuniverse
( mere-equiv-Prop (Fin (n +ℕ 2)))
( orientation-Complete-Undirected-Graph (n +ℕ 2)))}
( eq-is-contr
( is-contr-preserves-id-action-equiv-family-on-subuniverse
( mere-equiv-Prop (Fin (n +ℕ 2)))
( orientation-Complete-Undirected-Graph (n +ℕ 2))
( is-set-orientation-Complete-Undirected-Graph (n +ℕ 2)))))
( is-contr-equiv' _
( distributive-Π-Σ)
( is-contr-Π
( unique-action-equiv-family-over-subuniverse
( mere-equiv-Prop (Fin (n +ℕ 2)))
( orientation-Complete-Undirected-Graph (n +ℕ 2)))))))
( not-even-difference-orientation-aut-transposition-count
(n +ℕ 2 , (compute-raise l (Fin (n +ℕ 2)))) (star))

Expand Down
76 changes: 50 additions & 26 deletions src/finite-group-theory/delooping-sign-homomorphism.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,9 @@ open import finite-group-theory.permutations
open import finite-group-theory.sign-homomorphism
open import finite-group-theory.transpositions

open import foundation.action-on-equivalences-families-over-subuniverses
open import foundation.action-on-equivalences-type-families-over-subuniverses
open import foundation.action-on-identifications-functions
open import foundation.binary-transport
open import foundation.commuting-squares-of-maps
open import foundation.contractible-types
open import foundation.coproduct-types
Expand All @@ -31,6 +32,7 @@ open import foundation.empty-types
open import foundation.equality-dependent-pair-types
open import foundation.equivalence-classes
open import foundation.equivalence-extensionality
open import foundation.equivalence-induction
open import foundation.equivalence-relations
open import foundation.equivalences
open import foundation.function-extensionality
Expand Down Expand Up @@ -129,7 +131,7 @@ module _
unit-trunc-Prop (compute-raise-Fin l1 (n +ℕ 2))))
( quotient-aut-succ-succ-Fin n (transposition Y))
( map-equiv
( action-equiv-family-on-subuniverse
( action-equiv-family-over-subuniverse
( mere-equiv-Prop (Fin (n +ℕ 2)))
( D (n +ℕ 2))
( raise l1 (Fin (n +ℕ 2)) ,
Expand All @@ -146,9 +148,8 @@ module _

eq-counting-equivalence-class-R :
(n : ℕ)
Id
( equivalence-class (R (n +ℕ 2) (Fin-UU-Fin l1 (n +ℕ 2))))
( raise (l2 ⊔ lsuc l3) (Fin 2))
equivalence-class (R (n +ℕ 2) (Fin-UU-Fin l1 (n +ℕ 2))) =
raise (l2 ⊔ lsuc l3) (Fin 2)
eq-counting-equivalence-class-R n =
eq-equiv
( equivalence-class (R (n +ℕ 2) (Fin-UU-Fin l1 (n +ℕ 2))))
Expand All @@ -165,34 +166,57 @@ module _
(n : ℕ) (X X' : UU-Fin l1 n)
type-UU-Fin n X ≃ type-UU-Fin n X' D n X ≃ D n X'
invertible-action-D-equiv n =
action-equiv-family-on-subuniverse (mere-equiv-Prop (Fin n)) (D n)
action-equiv-family-over-subuniverse (mere-equiv-Prop (Fin n)) (D n)

preserves-id-equiv-invertible-action-D-equiv :
(n : ℕ) (X : UU-Fin l1 n)
Id (invertible-action-D-equiv n X X id-equiv) id-equiv
preserves-id-equiv-invertible-action-D-equiv n =
preserves-id-equiv-action-equiv-family-on-subuniverse
compute-id-equiv-action-equiv-family-over-subuniverse
( mere-equiv-Prop (Fin n))
( D n)

preserves-R-invertible-action-D-equiv :
( n : ℕ)
( X X' : UU-Fin l1 n)
( e : type-UU-Fin n X ≃ type-UU-Fin n X')
( a a' : D n X)
( sim-Equivalence-Relation (R n X) a a' ↔
sim-Equivalence-Relation
( R n X')
( map-equiv (invertible-action-D-equiv n X X' e) a)
( map-equiv (invertible-action-D-equiv n X X' e) a'))
preserves-R-invertible-action-D-equiv n X X' =
Ind-action-equiv-family-on-subuniverse (mere-equiv-Prop (Fin n)) (D n) X
( λ Y f
( a a' : D n X)
( sim-Equivalence-Relation (R n X) a a' ↔
sim-Equivalence-Relation (R n Y) (map-equiv f a) (map-equiv f a')))
( λ a a' id , id)
( X')
abstract
preserves-R-invertible-action-D-equiv :
( n : ℕ)
( X X' : UU-Fin l1 n)
( e : type-UU-Fin n X ≃ type-UU-Fin n X')
( a a' : D n X)
( sim-Equivalence-Relation (R n X) a a' ↔
sim-Equivalence-Relation
( R n X')
( map-equiv (invertible-action-D-equiv n X X' e) a)
( map-equiv (invertible-action-D-equiv n X X' e) a'))
preserves-R-invertible-action-D-equiv n X =
ind-equiv-subuniverse
( mere-equiv-Prop (Fin n))
( X)
( λ Y f
( a a' : D n X)
( sim-Equivalence-Relation (R n X) a a' ↔
sim-Equivalence-Relation
( R n Y)
( map-equiv (invertible-action-D-equiv n X Y f) a)
( map-equiv (invertible-action-D-equiv n X Y f) a')))
( λ a a'
( binary-tr
( sim-Equivalence-Relation (R n X))
( inv
( htpy-eq-equiv
( preserves-id-equiv-invertible-action-D-equiv n X)
( a)))
( inv
( htpy-eq-equiv
( preserves-id-equiv-invertible-action-D-equiv n X)
( a')))) ,
( binary-tr
( sim-Equivalence-Relation (R n X))
( htpy-eq-equiv
( preserves-id-equiv-invertible-action-D-equiv n X)
( a))
( htpy-eq-equiv
( preserves-id-equiv-invertible-action-D-equiv n X)
( a'))))

raise-UU-Fin-Fin : (n : ℕ) UU-Fin l1 n
pr1 (raise-UU-Fin-Fin n) = raise l1 (Fin n)
Expand Down Expand Up @@ -1490,7 +1514,7 @@ module _
unit-trunc-Prop (compute-raise-Fin l1 (n +ℕ 2)))))
¬ ( x =
( map-equiv
( action-equiv-family-on-subuniverse
( action-equiv-family-over-subuniverse
( mere-equiv-Prop (Fin (n +ℕ 2)))
( type-UU-Fin 2 ∘ Q (n +ℕ 2))
( raise l1 (Fin (n +ℕ 2)) ,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ open import finite-group-theory.permutations
open import finite-group-theory.sign-homomorphism
open import finite-group-theory.transpositions

open import foundation.action-on-equivalences-families-over-subuniverses
open import foundation.action-on-equivalences-type-families-over-subuniverses
open import foundation.action-on-identifications-functions
open import foundation.contractible-types
open import foundation.coproduct-types
Expand All @@ -43,6 +43,7 @@ open import foundation.propositional-truncations
open import foundation.raising-universe-levels
open import foundation.sets
open import foundation.transport-along-identifications
open import foundation.type-theoretic-principle-of-choice
open import foundation.unit-type
open import foundation.universe-levels

Expand Down Expand Up @@ -683,7 +684,7 @@ module _
unit-trunc-Prop (compute-raise-Fin l (n +ℕ 2))))
( sign-comp-aut-succ-succ-Fin n (transposition Y))
( map-equiv
( action-equiv-family-on-subuniverse
( action-equiv-family-over-subuniverse
( mere-equiv-Prop (Fin (n +ℕ 2)))
( λ X Fin (n +ℕ 2) ≃ pr1 X)
( raise l (Fin (n +ℕ 2)) ,
Expand Down Expand Up @@ -716,20 +717,19 @@ module _
simpson-comp-equiv (n +ℕ 2) ,
preserves-id-equiv-simpson-comp-equiv (n +ℕ 2)}
{ y =
( action-equiv-family-on-subuniverse
( action-equiv-family-over-subuniverse
( mere-equiv-Prop (Fin (n +ℕ 2)))
( λ X Fin (n +ℕ 2) ≃ type-UU-Fin (n +ℕ 2) X) ,
( preserves-id-equiv-action-equiv-family-on-subuniverse
( compute-id-equiv-action-equiv-family-over-subuniverse
( mere-equiv-Prop (Fin (n +ℕ 2)))
( λ X Fin (n +ℕ 2) ≃ type-UU-Fin (n +ℕ 2) X)))}
( eq-is-contr
( is-contr-preserves-id-action-equiv-family-on-subuniverse
( mere-equiv-Prop (Fin (n +ℕ 2)))
( λ X Fin (n +ℕ 2) ≃ type-UU-Fin (n +ℕ 2) X)
( λ X
is-set-equiv-is-set
( is-set-Fin (n +ℕ 2))
( is-set-type-UU-Fin (n +ℕ 2) X)))))
( is-contr-equiv' _
( distributive-Π-Σ)
( is-contr-Π
( unique-action-equiv-family-over-subuniverse
( mere-equiv-Prop (Fin (n +ℕ 2)))
( λ Y Fin (n +ℕ 2) ≃ type-UU-Fin (n +ℕ 2) Y))))))
( not-sign-comp-transposition-count
(n +ℕ 2 , (compute-raise l (Fin (n +ℕ 2)))) (star))

Expand Down
6 changes: 5 additions & 1 deletion src/foundation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,10 @@ open import foundation.0-images-of-maps public
open import foundation.0-maps public
open import foundation.1-types public
open import foundation.2-types public
open import foundation.action-on-equivalences-families-over-subuniverses public
open import foundation.action-on-equivalences-functions public
open import foundation.action-on-equivalences-functions-out-of-subuniverses public
open import foundation.action-on-equivalences-type-families public
open import foundation.action-on-equivalences-type-families-over-subuniverses public
open import foundation.action-on-identifications-binary-functions public
open import foundation.action-on-identifications-dependent-functions public
open import foundation.action-on-identifications-functions public
Expand Down Expand Up @@ -251,6 +253,7 @@ open import foundation.subtype-identity-principle public
open import foundation.subtypes public
open import foundation.subuniverses public
open import foundation.surjective-maps public
open import foundation.symmetric-binary-relations public
open import foundation.symmetric-difference public
open import foundation.symmetric-identity-types public
open import foundation.symmetric-operations public
Expand Down Expand Up @@ -295,6 +298,7 @@ open import foundation.universal-property-coproduct-types public
open import foundation.universal-property-dependent-pair-types public
open import foundation.universal-property-empty-type public
open import foundation.universal-property-fiber-products public
open import foundation.universal-property-identity-systems public
open import foundation.universal-property-identity-types public
open import foundation.universal-property-image public
open import foundation.universal-property-maybe public
Expand Down
Loading

0 comments on commit 58eb0fc

Please sign in to comment.