Skip to content

Commit

Permalink
add getadjfactor GB and PLOT back for CRAN checks
Browse files Browse the repository at this point in the history
  • Loading branch information
graysonwhite committed Nov 28, 2022
1 parent 41bf3e9 commit 8b6fe49
Show file tree
Hide file tree
Showing 4 changed files with 417 additions and 4 deletions.
2 changes: 2 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,9 @@ export(getRasterYSize)
export(getRefcodes)
export(getRefobject)
export(getadjfactorDWM)
export(getadjfactorGB)
export(getadjfactorP2VEG)
export(getadjfactorPLOT)
export(getadjfactorVOL)
export(getdomain)
export(getdups)
Expand Down
235 changes: 235 additions & 0 deletions R/getadjfactorGB.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
#' @rdname internal_desc
#' @export
getadjfactorGB <- function(condx=NULL, treex=NULL, seedx=NULL,
vcondsppx=NULL, vcondstrx=NULL, cond_dwm_calcx=NULL,
tuniqueid="PLT_CN", cuniqueid="PLT_CN", vuniqueid="PLT_CN", duniqueid="PLT_CN",
condid="CONDID", unitlut=NULL, unitvars=NULL, strvars=NULL, unitarea=NULL,
areavar=NULL, areawt="CONDPROP_UNADJ", cvars2keep=NULL,
tpropvars=list(SUBP="SUBPPROP_UNADJ", MICR="MICRPROP_UNADJ", MACR="MACRPROP_UNADJ")){

####################################################################################
## DESCRIPTION:
## Calculates adjustment factors for area and trees by strata (and estimation unit)
## to account for nonsampled plots and conditions.
## Creates an adjusted condition proportion by merging strata-level adjustment
## factors to cond and dividing CONDPROP_UNADJ by adjustment factor.
## NOTE: The following variables must be included in your dataset:
## unitvar (if there is more that 1 estimation unit)
## strvar (defining strata)
## CONDID;
## TPA_UNADJ;
## SUBPPROP_UNADJ (if you have TPA_UNADJ values > 5 and < 10);
## MICRPROP_UNADJ (if you have TPA_UNADJ values > 50);
## MACRPROP_UNADJ (if you have TPA_UNADJ values < 5)
##
## VALUE:
## 1. Summed proportions (*PROP_UNADJ_SUM) and adjustment factors (*PROP_ADJFAC) by
## strata and /or estunit (*PROP_UNADJ_SUM / n.strata or n.total, if strvars=NULL)
## 2. Adjusted condition proportion (CONDPROP_ADJ) appended to condx
####################################################################################

## Set global variables
CONDPROP_ADJ=CONDPROP_UNADJ=ADJ_FACTOR_COND=cadjfac=tadjfac=TPAGROW_UNADJ=
ADJ_FACTOR_MICR=ADJ_FACTOR_MACR=ADJ_FACTOR_SUBP=expfac=expcond=expcondtab=
n.strata=TPROP_BASIS=EXPNS=strwt=Prop=COVER_PCT_SUM <- NULL

## Define function
adjnm <- function(nm) {
## DESCRIPTION: changes name of variable
if (length(grep("UNADJ", nm)) == 1) {
sub("UNADJ", "ADJ", nm)
} else {
paste0(nm, "_ADJ")
}
}

## check tables
unitlut <- pcheck.table(unitlut)
unitarea <- pcheck.table(unitarea)

strunitvars <- c(unitvars, strvars)
keycondx <- key(condx)

## Condition proportion variable
varlst <- areawt
areasum <- paste0(areawt, "_SUM")
areaadj <- paste0("ADJ_FACTOR_", sub("PROP_UNADJ", "", areawt))
varsumlst <- areasum
varadjlst <- areaadj

## Get list of condition-level variables to calculate adjustments for
if (!is.null(treex)) {
tvarlst <- unlist(tpropvars)
tvarlst2 <- tvarlst[which(tvarlst%in% names(condx))]
if (length(tvarlst2) == 0) {
stop("must include unadjusted variables in cond")
}
tvarsum <- lapply(tpropvars, function(x) paste0(x, "_SUM"))
tvaradj <- lapply(tpropvars, function(x) paste0("ADJ_FACTOR_", sub("PROP_UNADJ", "", x)))
varlst <- c(varlst, tvarlst)
varsumlst <- c(varsumlst, unlist(tvarsum))
varadjlst <- c(varadjlst, unlist(tvaradj))
}

## Get list of condition-level variables to calculate adjustments for
if (!is.null(cond_dwm_calcx)) {
setkeyv(cond_dwm_calcx, c(cuniqueid, condid))
# dwmpropvars <- c("CONDPROP_CWD", "CONDPROP_FWD_SM", "CONDPROP_FWD_MD",
# "CONDPROP_FWD_LG", "CONDPROP_DUFF", "CONDPROP_PILE")
# varlst <- dwmpropvars[which(dwmpropvars %in% names(cond_dwm_calcx))]
if (length(varlst) == 0) {
stop("must include unadjusted variables in cond_dwm_calc")
}
varsumlst <- sapply(varlst, function(x) paste0(x, "_SUM"))
varadjlst <- sapply(varadjlst, function(x) sub("CONDPROP_", "", x))

condx <- merge(condx[, c(cuniqueid, condid, strunitvars), with=FALSE], cond_dwm_calcx)
}


###############################################################################
## Calculate adjustment factors by strata (and estimation unit) for variable list
## Sum condition variable(s) in varlst and divide by total number of plots in strata
###############################################################################
## Sum condition variable(s) in varlst by strata and rename varlst to *_sum
cndadj <- condx[, lapply(.SD, sum, na.rm=TRUE), by=strunitvars, .SDcols=varlst]
setnames(cndadj, varlst, varsumlst)
setkeyv(cndadj, strunitvars)
setkeyv(unitlut, strunitvars)

## Merge condition adjustment factors to strata table.
unitlut <- unitlut[cndadj]
n <- ifelse(is.null(strvars), "n.total", "n.strata")

## Calculate adjustment factor for conditions
## (divide summed condition proportions by total number of plots in strata)
unitlut[, (varadjlst) := lapply(.SD,
function(x, n) ifelse((is.na(x) | x==0), 0, get(n)/x), n), .SDcols=varsumlst]

## Merge condition adjustment factors to cond table to get plot identifiers.
setkeyv(condx, strunitvars)
condx <- condx[unitlut[,c(strunitvars, varadjlst), with=FALSE]]

## Change name of condition adjustment factor to cadjfac
## Note: CONDPPROP_UNADJ is the same as below (combination of MACR and SUBP)
if (length(areawt) == 1 && areawt == "CONDPROP_UNADJ") {
cadjfacnm <- suppressMessages(checknm("cadjfac", names(condx)))
setnames(condx, areaadj, cadjfacnm)
setnames(unitlut, areaadj, cadjfacnm)

## Calculate adjusted condition proportion for plots
areawtnm <- adjnm(areawt)
condx[, (areawtnm) := get(areawt) * get(cadjfacnm)]
} else {
cadjfacnm <- varadjlst

## Calculate adjusted condition proportion for plots
areawtnm <- adjnm(areawt)
condx[, (areawtnm) := Map("*", mget(cadjfacnm), mget(areawt))]
}
setkeyv(condx, c(cuniqueid, condid))

## Calculate adjusted condition proportions for different size plots for trees
if (!is.null(treex)) {
setkeyv(treex, c(tuniqueid, condid))

## Merge condition adjustment factors to tree table to get plot identifiers.
## Define a column in tree table, adjfact, to specify adjustment factor based on
## the size of the plot it was measure on (identified by TPA_UNADJ)
## (SUBPLOT: TPA_UNADJ=6.018046; MICROPLOT: TPA_UNADJ=74.965282; MACROPLOT: TPA_UNADJ>6

# if ("PROP_BASIS" %in% names(condx)) {
# treex[condx, tadjfac := ifelse(PROP_BASIS == "MICR", ADJ_FACTOR_MICR,
# ifelse(PROP_BASIS == "MACR", ADJ_FACTOR_MACR,
# ADJ_FACTOR_SUBP))]
if ("TPROP_BASIS" %in% names(treex)) {
treex[condx, tadjfac := ifelse(TPROP_BASIS == "MICR", get(tvaradj[["MICR"]]),
ifelse(TPROP_BASIS == "MACR", get(tvaradj[["MACR"]]),
get(tvaradj[["SUBP"]])))]
# } else if ("TPAGROW_UNADJ" %in% names(treex)) {
# treex[condx, tadjfac := ifelse(TPAGROW_UNADJ > 50, get(tvaradj[["MICR"]]),
# ifelse(TPAGROW_UNADJ > 0 & TPAGROW_UNADJ < 5, get(tvaradj[["MACR"]]),
# get(tvaradj[["SUBP"]])))]
} else {
treex[condx, tadjfac := 1]
}

if (!is.null(seedx)) {
setkeyv(seedx, c(tuniqueid, condid))
seedx[condx, tadjfac := get(tvaradj[["MICR"]])]
}
}
if (!is.null(vcondsppx)) {
setkeyv(vcondsppx, c(vuniqueid, condid))
vcondsppx <- merge(vcondsppx, condx[, c(key(condx), cadjfacnm), with=FALSE],
by=key(condx))
vcondsppx[, COVER_PCT_SUM := COVER_PCT_SUM]
}
if (!is.null(vcondstrx)) {
setkeyv(vcondstrx, c(vuniqueid, condid))
vcondstrx <- merge(vcondstrx, condx[, c(key(condx), cadjfacnm), with=FALSE],
by=key(condx))
vcondstrx[, COVER_PCT_SUM := COVER_PCT_SUM]
}
if (!is.null(vcondsppx) || !is.null(vcondstrx)) {
setnames(unitlut, cadjfacnm, "ADJ_FACTOR_P2VEG_SUBP")
}

## Calculate expansion factors (strata-level and cond-level)
if (!is.null(unitarea)) {
tabs <- check.matchclass(unitlut, unitarea, unitvars)
unitlut <- tabs$tab1
unitarea <- tabs$tab2

## Check if values match
test <- check.matchval(unitlut, unitarea, unitvars, subsetrows=TRUE)
if (nrow(test) < nrow(unitlut)) {
stop("unitlut rows less than unitarea rows")
}

## Merge unitlut with unitarea
setkeyv(unitarea, unitvars)
setkeyv(unitlut, unitvars)
unitlut <- unitlut[unitarea]

## Expansion factors - average area by strata
if (any(c("strwt", "Prop") %in% names(unitlut))) {
if ("strwt" %in% names(unitlut)) {
unitlut[, expfac:= get(areavar)/get(n)][, EXPNS := expfac * strwt]
} else {
unitlut[, expfac:= get(areavar)/get(n)][, EXPNS := expfac * Prop]
}

## Condition-level expansion factors
setkeyv(condx, strunitvars)
expcondtab <- merge(condx, unitlut[,c(strunitvars, "EXPNS"), with=FALSE],
by=strunitvars)
expcondtab <- expcondtab[, expcond:=(CONDPROP_ADJ * EXPNS)][order(get(cuniqueid))][
, EXPNS := NULL][, (strunitvars) := NULL]
setkeyv(condx, c(cuniqueid, condid))
setkeyv(expcondtab, c(cuniqueid, condid))
}
}

## Remove summed variables from condx
vars2remove <- c(varsumlst, cadjfacnm)
vars2remove <- vars2remove[vars2remove %in% names(condx)]
if (length(vars2remove) > 0) {
condx[, (vars2remove) := NULL]
}

## Remove *_ADJFAC and *_UNADJ columns in condx
#condx[, names(condx)[grep("ADJ_FACTOR_", names(condx))]:= NULL]
#condx[, names(condx)[grep("_UNADJ", names(condx))]:= NULL]

adjfacdata <- list(condx=condx, unitlut=unitlut)
adjfacdata$expcondtab <- expcondtab
if (!is.null(treex)) adjfacdata$treex <- treex
if (!is.null(seedx)) adjfacdata$seedx <- seedx
if (!is.null(vcondsppx)) adjfacdata$vcondsppx <- vcondsppx
if (!is.null(vcondstrx)) adjfacdata$vcondstrx <- vcondstrx

adjfacdata$cvars2keep <- names(condx)[names(condx) != "CONDPROP_ADJ"]

return(adjfacdata)
}
137 changes: 137 additions & 0 deletions R/getadjfactorPLOT.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
#' @rdname internal_desc
#' @export
getadjfactorPLOT <- function(condx=NULL, treex=NULL, seedx=NULL, cuniqueid="PLT_CN",
tuniqueid="PLT_CN", condid="CONDID", checkNA=TRUE, areawt="CONDPROP_UNADJ",
tpropvars=list(SUBP="SUBPPROP_UNADJ", MICR="MICRPROP_UNADJ", MACR="MACRPROP_UNADJ")){

####################################################################################
## DESCRIPTION:
## Calculates adjustment factors for plots to account for nonsampled conditions.
## Creates an adjusted condition proportion by dividing 1 by summed proportions in plot.
## NOTE: The following variables must be included in your dataset:
## TPA_UNADJ;
## SUBPPROP_UNADJ (if you have TPA_UNADJ values > 5 and < 10);
## MICRPROP_UNADJ (if you have TPA_UNADJ values > 50);
## MACRPROP_UNADJ (if you have TPA_UNADJ values < 5)
##
## VALUE:
## 1. Summed proportions (*PROP_UNADJ_SUM) and adjustment factors (*PROP_ADJFAC) by
## estunit (*PROP_UNADJ_SUM / n.total)
## 2. Adjusted condition proportion (CONDPROP_ADJ) appended to condx
####################################################################################

## Set global variables
CONDPROP_ADJ=CONDPROP_UNADJ=CONDPROP_ADJFAC=tadjfac=cadjfac=TPA_UNADJ=
MICRPROP_UNADJ_SUM=MACRPROP_UNADJ_SUM=SUBPPROP_UNADJ_SUM=MICRPROP_ADJFAC_SUM=
MACRPROP_ADJFAC_SUM=SUBPPROP_ADJFAC_SUM=CONDPROP_UNADJ_SUM=TPROP_BASIS <- NULL

## Define function
adjnm <- function(nm) {
## DESCRIPTION: changes name of variable
if (length(grep("UNADJ", nm)) == 1) {
sub("UNADJ", "ADJ", nm)
} else {
paste0(nm, "_ADJ")
}
}

keycondx <- key(condx)

## Condition proportion variable
varlst <- areawt
areasum <- paste0(areawt, "_SUM")
areaadj <- paste0("ADJ_FACTOR_", sub("PROP_UNADJ", "", areawt))
varsumlst <- areasum
varadjlst <- areaadj

## Check tables
condx <- pcheck.table(condx)
treex <- pcheck.table(treex)
seedx <- pcheck.table(seedx)

## Get list of condition-level variables to calculate adjustments for
if (!is.null(treex)) {
tvarlst <- unlist(tpropvars)
tvarlst2 <- tvarlst[which(tvarlst%in% names(condx))]
if (length(tvarlst2) == 0) {
stop("must include unadjusted variables in cond")
}
tvarsum <- lapply(tpropvars, function(x) paste0(x, "_SUM"))
tvaradj <- lapply(tpropvars, function(x) paste0("ADJ_FACTOR_", sub("PROP_UNADJ", "", x)))
varlst <- c(varlst, tvarlst)
varsumlst <- c(varsumlst, unlist(tvarsum))
varadjlst <- c(varadjlst, unlist(tvaradj))
}


###############################################################################
## Calculate adjustment factors by plot
## Sum condition variable(s) in varlst by plot
###############################################################################
setkeyv(condx, cuniqueid)

## Sum condition variable(s) in varlst by plot and rename varlst to *_sum
pltadj <- condx[, lapply(.SD, sum, na.rm=TRUE), by=cuniqueid, .SDcols=varlst]
setnames(pltadj, varlst, varsumlst)
setkeyv(pltadj, cuniqueid)

## Calculate adjusted condition proportion for plots
# pltadj$CONDPROP_ADJ <- 1 / pltadj$CONDPROP_UNADJ_SUM
# pltx <- pltadj[, c(cuniqueid, "CONDPROP_ADJ"), with=FALSE]
# setkeyv(pltx, cuniqueid)

pltadj[, (varadjlst) := lapply(.SD,
function(x) ifelse((is.na(x) | x==0), 0, 1/x)), .SDcols=varsumlst]
condx <- condx[pltadj]

## Change name of condition adjustment factor to cadjfac
## Note: CONDPPROP_UNADJ is the same as below (combination of MACR and SUBP)
cadjfacnm <- suppressMessages(checknm("cadjfac", names(condx)))
setnames(condx, areaadj, cadjfacnm)


## Calculate adjusted condition proportion for plots
areawtnm <- adjnm(areawt)
condx[, (areawtnm) := get(areawt) * get(cadjfacnm)]
setkeyv(condx, c(cuniqueid, condid))


## Calculate adjustment factors for different size plots for trees
if (!is.null(treex)) {
## Merge condition adjustment factors to tree table to get plot identifiers.
## Define a column in tree table, adjfact, to specify adjustment factor based on
## the size of the plot it was measure on (identified by TPA_UNADJ)
## (SUBPLOT: TPA_UNADJ=6.018046; MICROPLOT: TPA_UNADJ=74.965282; MACROPLOT: TPA_UNADJ=0.999188
setkeyv(treex, tuniqueid)

if ("TPROP_BASIS" %in% names(treex)) {
treex[pltadj, tadjfac := ifelse(TPROP_BASIS == "MICR", get(tvaradj[["MICR"]]),
ifelse(TPROP_BASIS == "MACR", get(tvaradj[["MACR"]]),
get(tvaradj[["SUBP"]])))]
} else {
treex[pltadj, tadjfac := ifelse(TPA_UNADJ > 50, get(tvaradj[["MICR"]]),
ifelse(TPA_UNADJ > 0 & TPA_UNADJ < 5, get(tvaradj[["MACR"]]),
get(tvaradj[["SUBP"]])))]
}
treex[, tadjfac := ifelse(tadjfac > 0, tadjfac, 1)]

if (!is.null(seedx)) {
setkeyv(seedx, c(tuniqueid))
seedx[pltadj, tadjfac := get(tvaradj[["MICR"]])]
seedx[, tadjfac := ifelse(tadjfac > 0, tadjfac, 1)]
}
}
## Remove summed variables from condx
vars2remove <- c(varsumlst, cadjfacnm, varadjlst)
vars2remove <- vars2remove[vars2remove %in% names(condx)]
if (length(vars2remove) > 0) {
condx[, (vars2remove) := NULL]
}

adjfacdata <- list(condx = condx)
if (!is.null(treex)) adjfacdata$treex <- treex
if (!is.null(seedx)) adjfacdata$seedx <- seedx

return(adjfacdata)
}

Loading

0 comments on commit 8b6fe49

Please sign in to comment.