Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add first try at openfisca-us-based analysis #3

Open
wants to merge 8 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
202 changes: 202 additions & 0 deletions py/openfisca-analysis.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,202 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"source": [
"from openfisca_us import Microsimulation, reforms\n",
"from openfisca_us.api import *\n",
"import numpy as np\n",
"import pandas as pd"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 2,
"source": [
"# Calculate poverty rate\n",
"baseline = Microsimulation(year=2020)\n",
"baseline.calc(\"in_poverty\", map_to=\"person\").mean()"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.11652875394831709"
]
},
"metadata": {},
"execution_count": 2
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 3,
"source": [
"from openfisca_us.entities import *\n",
"\n",
"\n",
"class basic_income(Variable):\n",
" value_type = float\n",
" entity = TaxUnit\n",
" definition_period = YEAR\n",
" label = \"Basic income\"\n",
"\n",
" def formula(tax_unit, period, parameters):\n",
" # Extract FPG parameter\n",
" fpg_params = parameters(period).poverty.fpg\n",
" # Includes first_person and additional_person\n",
" # Extract tax unit number of people\n",
" nb_people = tax_unit.nb_persons()\n",
" # Calculate FPG\n",
" fpg = (\n",
" fpg_params.first_person.contiguous_US\n",
" + (nb_people - 1) * fpg_params.additional_person.contiguous_US\n",
" )\n",
" # Extract taxable income\n",
" taxable_income = tax_unit(\"taxable_income\", period)\n",
" # Calculate basic income phased out at 50%\n",
" return np.maximum(fpg - taxable_income * 0.5, 0)\n",
" # TODO: Make 50% a parameter"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 4,
"source": [
"class taxable_income(Variable):\n",
" value_type = float\n",
" entity = TaxUnit\n",
" definition_period = YEAR"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 5,
"source": [
"class SPM_unit_net_income(Variable):\n",
" value_type = float\n",
" entity = SPMUnit\n",
" label = u\"SPM unit net income\"\n",
" definition_period = YEAR\n",
"\n",
" def formula(spm_unit, period):\n",
" INCOME_COMPONENTS = [\n",
" \"SPM_unit_total_income\",\n",
" \"SPM_unit_SNAP\",\n",
" \"SPM_unit_capped_housing_subsidy\",\n",
" \"SPM_unit_school_lunch_subsidy\",\n",
" \"SPM_unit_energy_subsidy\",\n",
" \"SPM_unit_WIC\",\n",
" ]\n",
" EXPENSE_COMPONENTS = [\n",
" \"SPM_unit_FICA\",\n",
" \"SPM_unit_federal_tax\",\n",
" \"SPM_unit_state_tax\",\n",
" \"SPM_unit_capped_work_childcare_expenses\",\n",
" \"SPM_unit_medical_expenses\",\n",
" ]\n",
" income = add(spm_unit, period, *INCOME_COMPONENTS)\n",
" expense = add(spm_unit, period, *EXPENSE_COMPONENTS)\n",
" basic_income = sum_contained_tax_units(\n",
" \"basic_income\", spm_unit, period\n",
" )\n",
" return income - expense + basic_income"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 6,
"source": [
"reform = (\n",
" reforms.restructure(SPM_unit_net_income),\n",
" reforms.new_variable(basic_income),\n",
" reforms.new_variable(taxable_income),\n",
")\n",
"reform_sim = Microsimulation(reform, year=2020)\n",
"from openfisca_us_data import RawCPS\n",
"\n",
"taxable_income_values = RawCPS.load(2020, \"tax_unit\").TAX_INC.values\n",
"reform_sim.simulation.set_input(\"taxable_income\", 2020, taxable_income_values)"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 7,
"source": [
"df = reform_sim.df(\n",
" [\"SPM_unit_net_income\", \"taxable_income\", \"in_poverty\", \"basic_income\"]\n",
")"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 8,
"source": [
"df.basic_income.groupby(df.taxable_income.decile_rank()).mean()"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"1.0 17615.118505\n",
"2.0 18213.645279\n",
"3.0 17982.893939\n",
"4.0 12921.723542\n",
"5.0 7550.313452\n",
"6.0 4565.691330\n",
"7.0 3264.406229\n",
"8.0 2298.077669\n",
"9.0 1967.494285\n",
"10.0 1499.863151\n",
"dtype: float64"
]
},
"metadata": {},
"execution_count": 8
}
],
"metadata": {}
}
],
"metadata": {
"orig_nbformat": 4,
"language_info": {
"name": "python",
"version": "3.8.8",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3.8.8 64-bit ('base': conda)"
},
"interpreter": {
"hash": "d8fe82497dc3af1dafdfcaf67c3f347e622d9ec55d37e96a4812404db83e4772"
}
},
"nbformat": 4,
"nbformat_minor": 2
}