Skip to content

Commit

Permalink
Built site for gh-pages
Browse files Browse the repository at this point in the history
  • Loading branch information
Quarto GHA Workflow Runner committed Nov 7, 2024
1 parent 3e7448b commit 7e03302
Show file tree
Hide file tree
Showing 6 changed files with 224 additions and 216 deletions.
2 changes: 1 addition & 1 deletion .nojekyll
Original file line number Diff line number Diff line change
@@ -1 +1 @@
02cb5d4d
69547296
22 changes: 14 additions & 8 deletions schedule/slides/21-nnets-intro.html
Original file line number Diff line number Diff line change
Expand Up @@ -333,7 +333,7 @@
<h2>21 Neural nets</h2>
<p><span class="secondary">Stat 406</span></p>
<p><span class="secondary">Geoff Pleiss, Trevor Campbell</span></p>
<p>Last modified – 02 November 2023</p>
<p>Last modified – 06 November 2024</p>
<p><span class="math display">\[
\DeclareMathOperator*{\argmin}{argmin}
\DeclareMathOperator*{\argmax}{argmax}
Expand Down Expand Up @@ -413,8 +413,8 @@ <h2>High level overview</h2>
</figure>
</div>
</section>
<section id="recall-nonparametric-regression" class="slide level2">
<h2>Recall nonparametric regression</h2>
<section id="recall-basis-regression" class="slide level2">
<h2>Recall basis regression</h2>
<p>Suppose <span class="math inline">\(Y \in \mathbb{R}\)</span> and we are trying estimate the regression function <span class="math display">\[\Expect{Y\given X} = f_*(X)\]</span></p>
<p>In Module 2, we discussed basis expansion,</p>
<ol type="1">
Expand All @@ -423,12 +423,11 @@ <h2>Recall nonparametric regression</h2>
<li><p>Estimate <span class="math inline">\(\beta_k\)</span> with least squares</p></li>
</ol>
</section>
<section id="recall-nonparametric-regression-1" class="slide level2">
<h2>Recall nonparametric regression</h2>
<section id="recall-basis-regression-1" class="slide level2">
<h2>Recall basis regression</h2>
<p>The weaknesses of this approach are:</p>
<ul>
<li>The basis is fixed and independent of the data</li>
<li>If <span class="math inline">\(p\)</span> is large, then nonparametrics doesn’t work well at all (recall the Curse of Dimensionality)</li>
<li>If the basis doesn’t “agree” with <span class="math inline">\(f_*\)</span>, then <span class="math inline">\(K\)</span> will have to be large to capture the structure</li>
<li>What if parts of <span class="math inline">\(f_*\)</span> have substantially different structure? Say <span class="math inline">\(f_*(x)\)</span> really wiggly for <span class="math inline">\(x \in [-1,3]\)</span> but smooth elsewhere</li>
</ul>
Expand Down Expand Up @@ -520,6 +519,14 @@ <h2>What about classification (10 classes, 2 layers)</h2>
</div>
</div>
</section>
<section id="nonlinear-activation-functions" class="slide level2">
<h2>(Nonlinear) activation functions</h2>

<img data-src="21-nnets-intro_files/figure-revealjs/sigmoid-1.svg" class="quarto-figure quarto-figure-center r-stretch"></section>
<section id="effect-of-depth" class="slide level2">
<h2>Effect of depth</h2>

<img data-src="gfx/nn_depth_features.png" class="quarto-figure quarto-figure-center r-stretch"></section>
<section id="two-observations" class="slide level2">
<h2>Two observations</h2>
<ol type="1">
Expand Down Expand Up @@ -559,8 +566,7 @@ <h2>Two observations</h2>
<ul>
<li>ReLU is the current fashion (used to be tanh or logistic)</li>
</ul>

<img data-src="21-nnets-intro_files/figure-revealjs/sigmoid-1.svg" class="quarto-figure quarto-figure-center r-stretch"></section>
</section>
<section id="next-time" class="title-slide slide level1 center">
<h1>Next time…</h1>
<p>How do we estimate these monsters?</p>
Expand Down
Loading

0 comments on commit 7e03302

Please sign in to comment.