Skip to content

Tsung-Ping/Joint-beat-and-downbeat-estimation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Joint-beat-and-downbeat-estimation

We propose a deep learning model for joint beat and downbeat estimation. We tackle the task without incorporating a postprocessing network (often dynamic Bayesian networks). By inspecting a state-of-the-art convolutional approach, we propose several reformulations regarding the network architecture and the loss function. For further details, please refer to "Toward Postprocessing-free Neural Networks for Joint Beat and Downbeat Estimation" (ISMIR 2022).

Model Architecture

Pre-trained Model

A model pre-trained on the Ballroom dataset (except tracks whose id=0) is provided. The id of each track can be found in splits.

Requirements

  • python >= 3.6.9
  • tensorflow >= 2.5.0
  • numpy >= 1.19.5
  • mir_eval = 0.6

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages