Skip to content

Commit

Permalink
Better yet to use float instead of np.float64.
Browse files Browse the repository at this point in the history
  • Loading branch information
Martin Hirzel committed Mar 17, 2024
1 parent 55e9509 commit 96b1e1f
Showing 1 changed file with 4 additions and 4 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -213,15 +213,15 @@ def init_coef(self, itype, X, y, s):
if itype == 0:
# clear by zeros
self.coef_ = np.zeros(self.n_sfv_ * self.n_features_,
dtype=np.float64)
dtype=float)
elif itype == 1:
# at random
self.coef_ = np.random.randn(self.n_sfv_ * self.n_features_)

elif itype == 2:
# learned by standard LR
self.coef_ = np.empty(self.n_sfv_ * self.n_features_,
dtype=np.float64)
dtype=float)
coef = self.coef_.reshape(self.n_sfv_, self.n_features_)

clr = LogisticRegression(C=self.C, penalty='l2',
Expand All @@ -232,7 +232,7 @@ def init_coef(self, itype, X, y, s):
elif itype == 3:
# learned by standard LR
self.coef_ = np.empty(self.n_sfv_ * self.n_features_,
dtype=np.float64)
dtype=float)
coef = self.coef_.reshape(self.n_sfv_, self.n_features_)

for i in range(self.n_sfv_):
Expand Down Expand Up @@ -276,7 +276,7 @@ def fit(self, X, y, ns=N_S, itype=0, **kwargs):
# set instance variables
self.n_s_ = ns
self.n_sfv_ = np.max(s) + 1
self.c_s_ = np.array([np.sum(s == si).astype(np.float64)
self.c_s_ = np.array([np.sum(s == si).astype(float)
for si in range(self.n_sfv_)])
self.n_features_ = X.shape[1]
self.n_samples_ = X.shape[0]
Expand Down

0 comments on commit 96b1e1f

Please sign in to comment.