[img NA]
患糖尿病的孩子往往需要在各种限制下摄取营养,对于每份食物,都需要严格控制热量、碳水化合物等营养成分。 本项目与儿科医院合作,旨在为糖尿病人家庭估算食物营养提供帮助。
拍摄一张食物照片,模型将自动识别计算它的全部营养信息。
[demo NA]
原型关注于单张食物照片(image),构建对食物类别(class)、体积(volume)的感知,输出食物的量化营养成分含量(nutrition)。
-
问题类型:多类别分类问题 + 回归(体积)
31个不同的食物类别:['dumpling', 'tcpg', 'sm', 'qzly', 'potato', 'qchx', 'beefpotato', 'noodles', 'bread', 'mdcsg', 'mdcrs', 'gbrice', 'khs', 'currybeef', 'beef', 'hsyk', 'hstddpg', 'hspg', 'hsjy', 'hsjt', 'chiken', 'hsdy', 'hsdp', 'dtj', 'cyszx', 'cdj', 'crht', 'bdcrs', 'bun', 'bzhx']
-
数据集:医院餐厅标准数据 + 网络食物图像
-
标签:所有的图片数据均标注了对应的食物种类以及食物轮廓; 此外, 标准数据还分别包括了31种食物的各个详细成分的称重测量数据。
-
细节定义:每张照片(image)包含至少一种食物,食物应当清晰且尽量保证没有中空部分; 食物容器尽量为常见的餐具,以不遮挡食物为佳; 拍摄时尽量调整至俯视视角。
-
应用化:整个算法原型被移植到Android平台,适用于绝大部分设备和应用场景。
[img]
(origin repo says:) This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bounding boxes and segmentation masks for each instance of an object in the image. It's based on Feature Pyramid Network (FPN) and a ResNet101 backbone.
-
preprocessing.py generates the feeder dir from your own dataset, which contains resized images divided into train/test. To have a quick start:
data_list = [x for x in scan_data( '/run/media/sh/My Passport/erkeyiyuan/数据/网络/netfood', # change these lines with your own dataset. '/run/media/sh/My Passport/erkeyiyuan/数据/本地菜品/压缩包')]
-
core.py if the feeder dir is generated, and make sure the path to 'mask_rcnn_coco.h5' is set, you can do whatever you want with core.py.
# Directory to save logs and trained model MODEL_DIR = 'detection/__logs__' # Local path to trained weights file COCO_MODEL_PATH = 'mask_rcnn_coco.h5' # Download COCO trained weights from Releases if needed if not os.path.exists(COCO_MODEL_PATH): utils.download_trained_weights(COCO_MODEL_PATH) # count = len(imglist) # 文件的数目 IMG_WIDTH = 200 IMG_HEIGHT = 150
missing intro.
missing intro.
missing intro.
这篇readme 的结构参考: ConvNets Series. Actual Project Prototyping with Mask R-CNN