Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Split PCA #3610

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 5 additions & 6 deletions src/spikeinterface/sortingcomponents/clustering/circus.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ class CircusClustering:
"returns_split_count": True,
},
"radius_um": 100,
"n_svd": [5, 2],
"n_svd": 5,
"ms_before": 0.5,
"ms_after": 0.5,
"rank": 5,
Expand Down Expand Up @@ -94,7 +94,7 @@ def main_function(cls, recording, peaks, params, job_kwargs=dict()):
wfs = few_wfs[:, :, 0]
from sklearn.decomposition import TruncatedSVD

tsvd = TruncatedSVD(params["n_svd"][0])
tsvd = TruncatedSVD(params["n_svd"])
tsvd.fit(wfs)

model_folder = tmp_folder / "tsvd_model"
Expand Down Expand Up @@ -148,8 +148,8 @@ def main_function(cls, recording, peaks, params, job_kwargs=dict()):
sub_data = all_pc_data[mask]
sub_data = sub_data.reshape(len(sub_data), -1)

if all_pc_data.shape[1] > params["n_svd"][1]:
tsvd = PCA(params["n_svd"][1], whiten=True)
if all_pc_data.shape[1] > params["n_svd"]:
tsvd = PCA(params["n_svd"], whiten=True)
else:
tsvd = PCA(all_pc_data.shape[1], whiten=True)

Expand Down Expand Up @@ -203,8 +203,7 @@ def main_function(cls, recording, peaks, params, job_kwargs=dict()):
waveforms_sparse_mask=sparse_mask,
min_size_split=min_size,
clusterer_kwargs=d["hdbscan_kwargs"],
n_pca_features=params["n_svd"][1],
scale_n_pca_by_depth=True,
n_pca_features=[2, 4, 6, 8, 10],
),
**params["recursive_kwargs"],
**job_kwargs,
Expand Down
112 changes: 61 additions & 51 deletions src/spikeinterface/sortingcomponents/clustering/split.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,6 @@ def split(
clusterer_kwargs={"min_cluster_size": 25},
min_size_split=25,
n_pca_features=2,
scale_n_pca_by_depth=False,
minimum_overlap_ratio=0.25,
):
local_labels = np.zeros(peak_indices.size, dtype=np.int64)
Expand Down Expand Up @@ -213,74 +212,85 @@ def split(

local_labels[dont_have_channels] = -2
kept = np.flatnonzero(~dont_have_channels)
# print(recursion_level, kept.size, min_size_split)

if kept.size < min_size_split:
return False, None

aligned_wfs = aligned_wfs[kept, :, :]

if not isinstance(n_pca_features, np.ndarray):
n_pca_features = np.array([n_pca_features])

n_pca_features = n_pca_features[n_pca_features <= aligned_wfs.shape[1]]
flatten_features = aligned_wfs.reshape(aligned_wfs.shape[0], -1)

if flatten_features.shape[1] > n_pca_features:
from sklearn.decomposition import PCA
is_split = False

# from sklearn.decomposition import TruncatedSVD
for n_pca in n_pca_features:

if scale_n_pca_by_depth:
# tsvd = TruncatedSVD(n_pca_features * recursion_level)
tsvd = PCA(n_pca_features * recursion_level, whiten=True)
else:
if flatten_features.shape[1] > n_pca:
from sklearn.decomposition import PCA

# from sklearn.decomposition import TruncatedSVD
# tsvd = TruncatedSVD(n_pca_features)
tsvd = PCA(n_pca_features, whiten=True)
final_features = tsvd.fit_transform(flatten_features)
else:
final_features = flatten_features

if clusterer == "hdbscan":
from hdbscan import HDBSCAN

clust = HDBSCAN(**clusterer_kwargs)
clust.fit(final_features)
possible_labels = clust.labels_
is_split = np.setdiff1d(possible_labels, [-1]).size > 1
elif clusterer == "isocut5":
min_cluster_size = clusterer_kwargs["min_cluster_size"]
dipscore, cutpoint = isocut5(final_features[:, 0])
possible_labels = np.zeros(final_features.shape[0])
if dipscore > 1.5:
mask = final_features[:, 0] > cutpoint
if np.sum(mask) > min_cluster_size and np.sum(~mask):
possible_labels[mask] = 1
tsvd = PCA(n_pca, whiten=True)
final_features = tsvd.fit_transform(flatten_features)
else:
final_features = flatten_features

if clusterer == "hdbscan":
from hdbscan import HDBSCAN

clust = HDBSCAN(**clusterer_kwargs)
clust.fit(final_features)
possible_labels = clust.labels_
is_split = np.setdiff1d(possible_labels, [-1]).size > 1
elif clusterer == "isocut5":
min_cluster_size = clusterer_kwargs["min_cluster_size"]
dipscore, cutpoint = isocut5(final_features[:, 0])
possible_labels = np.zeros(final_features.shape[0])
if dipscore > 1.5:
mask = final_features[:, 0] > cutpoint
if np.sum(mask) > min_cluster_size and np.sum(~mask):
possible_labels[mask] = 1
is_split = np.setdiff1d(possible_labels, [-1]).size > 1
else:
is_split = False
else:
is_split = False
else:
raise ValueError(f"wrong clusterer {clusterer}")
raise ValueError(f"wrong clusterer {clusterer}. Possible options are 'hdbscan' or 'isocut5'.")

# DEBUG = True
DEBUG = False
if DEBUG:
import matplotlib.pyplot as plt

labels_set = np.setdiff1d(possible_labels, [-1])
colors = plt.colormaps["tab10"].resampled(len(labels_set))
colors = {k: colors(i) for i, k in enumerate(labels_set)}
colors[-1] = "k"
fig, axs = plt.subplots(nrows=2)

# DEBUG = True
DEBUG = False
if DEBUG:
import matplotlib.pyplot as plt
flatten_wfs = aligned_wfs.swapaxes(1, 2).reshape(aligned_wfs.shape[0], -1)

labels_set = np.setdiff1d(possible_labels, [-1])
colors = plt.colormaps["tab10"].resampled(len(labels_set))
colors = {k: colors(i) for i, k in enumerate(labels_set)}
colors[-1] = "k"
fix, axs = plt.subplots(nrows=2)
sl = slice(None, None, 10)
for k in np.unique(possible_labels):
mask = possible_labels == k
ax = axs[0]
ax.scatter(final_features[:, 0][mask][sl], final_features[:, 1][mask][sl], s=5, color=colors[k])

flatten_wfs = aligned_wfs.swapaxes(1, 2).reshape(aligned_wfs.shape[0], -1)
ax = axs[1]
ax.plot(flatten_wfs[mask][sl].T, color=colors[k], alpha=0.5)
ax.set_xlabel("PCA features")

sl = slice(None, None, 10)
for k in np.unique(possible_labels):
mask = possible_labels == k
ax = axs[0]
ax.scatter(final_features[:, 0][mask][sl], final_features[:, 1][mask][sl], s=5, color=colors[k])
axs[0].set_title(f"{clusterer} {is_split} {peak_indices[0]} {n_pca}, recursion_level={recursion_level}")
import time

ax = axs[1]
ax.plot(flatten_wfs[mask][sl].T, color=colors[k], alpha=0.5)
plt.savefig(f"split_{recursion_level}_{time.time()}.png")
plt.close()
# plt.show()

axs[0].set_title(f"{clusterer} {is_split} {peak_indices[0]} {np.unique(possible_labels)}")
plt.show()
if is_split:
break

if not is_split:
return is_split, None
Expand Down
1 change: 0 additions & 1 deletion src/spikeinterface/sortingcomponents/clustering/tdc.py
Original file line number Diff line number Diff line change
Expand Up @@ -162,7 +162,6 @@ def main_function(cls, recording, peaks, params, job_kwargs=dict()):
waveforms_sparse_mask=sparse_mask,
min_size_split=min_cluster_size,
n_pca_features=3,
scale_n_pca_by_depth=True,
),
recursive=True,
recursive_depth=3,
Expand Down
Loading