Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Minor changes on drift benchmark for figures #2032

Merged
merged 3 commits into from
Sep 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -487,7 +487,7 @@ def plot_errors_several_benchmarks(benchmarks, axes=None, show_legend=True, colo
mean_error = np.sqrt(np.mean((errors) ** 2, axis=1))
depth_error = np.sqrt(np.mean((errors) ** 2, axis=0))

axes[0].plot(benchmark.temporal_bins, mean_error, label=benchmark.title, color=c)
axes[0].plot(benchmark.temporal_bins, mean_error, lw=1, label=benchmark.title, color=c)
parts = axes[1].violinplot(mean_error, [count], showmeans=True)
if c is not None:
for pc in parts["bodies"]:
Expand All @@ -500,8 +500,8 @@ def plot_errors_several_benchmarks(benchmarks, axes=None, show_legend=True, colo
axes[2].plot(benchmark.spatial_bins, depth_error, label=benchmark.title, color=c)

ax0 = ax = axes[0]
ax.set_xlabel("time [s]")
ax.set_ylabel("error [um]")
ax.set_xlabel("Time [s]")
ax.set_ylabel("Error [μm]")
if show_legend:
ax.legend()
_simpleaxis(ax)
Expand All @@ -514,7 +514,7 @@ def plot_errors_several_benchmarks(benchmarks, axes=None, show_legend=True, colo

ax2 = axes[2]
ax2.set_yticks([])
ax2.set_xlabel("depth [um]")
ax2.set_xlabel("Depth [μm]")
# ax.set_ylabel('error')
channel_positions = benchmark.recording.get_channel_locations()
probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max()
Expand Down Expand Up @@ -584,23 +584,30 @@ def plot_motions_several_benchmarks(benchmarks):
_simpleaxis(ax)


def plot_speed_several_benchmarks(benchmarks, ax=None, colors=None):
def plot_speed_several_benchmarks(benchmarks, detailed=True, ax=None, colors=None):
if ax is None:
fig, ax = plt.subplots(figsize=(5, 5))

for count, benchmark in enumerate(benchmarks):
color = colors[count] if colors is not None else None
bottom = 0
i = 0
patterns = ["/", "\\", "|", "*"]
for key, value in benchmark.run_times.items():
if count == 0:
label = key.replace("_", " ")
else:
label = None
ax.bar([count], [value], label=label, bottom=bottom, color=color, edgecolor="black", hatch=patterns[i])
bottom += value
i += 1

if detailed:
bottom = 0
i = 0
patterns = ["/", "\\", "|", "*"]
for key, value in benchmark.run_times.items():
if count == 0:
label = key.replace("_", " ")
else:
label = None
ax.bar([count], [value], label=label, bottom=bottom, color=color, edgecolor="black", hatch=patterns[i])
bottom += value
i += 1
else:
total_run_time = np.sum([value for key, value in benchmark.run_times.items()])
ax.bar([count], [total_run_time], color=color, edgecolor="black")



# ax.legend()
ax.set_ylabel("speed (s)")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@

from spikeinterface.extractors import read_mearec
from spikeinterface.preprocessing import bandpass_filter, zscore, common_reference, scale, highpass_filter, whiten
from spikeinterface.sorters import run_sorter
from spikeinterface.sorters import run_sorter, read_sorter_folder
from spikeinterface.widgets import plot_unit_waveforms, plot_gt_performances

from spikeinterface.comparison import GroundTruthComparison
Expand Down Expand Up @@ -184,17 +184,21 @@ def extract_waveforms(self):
we.run_extract_waveforms(seed=22051977, **self.job_kwargs)
self.waveforms[key] = we

def run_sorters(self):
def run_sorters(self, skip_already_done=True):
for case in self.sorter_cases:
label = case["label"]
print("run sorter", label)
sorter_name = case["sorter_name"]
sorter_params = case["sorter_params"]
recording = self.recordings[case["recording"]]
output_folder = self.folder / f"tmp_sortings_{label}"
sorting = run_sorter(
sorter_name, recording, output_folder, **sorter_params, delete_output_folder=self.delete_output_folder
)
if output_folder.exists() and skip_already_done:
print('already done')
sorting = read_sorter_folder(output_folder)
else:
sorting = run_sorter(
sorter_name, recording, output_folder, **sorter_params, delete_output_folder=self.delete_output_folder
)
self.sortings[label] = sorting

def compute_distances_to_static(self, force=False):
Expand Down