Skip to content

Commit

Permalink
Merge pull request #2018 from catalystneuro/add_matlab_documentation
Browse files Browse the repository at this point in the history
Add "how to" section on how to load matlab data
  • Loading branch information
samuelgarcia authored Sep 27, 2023
2 parents ff1b8cd + add9f98 commit ceaebfa
Show file tree
Hide file tree
Showing 2 changed files with 101 additions and 0 deletions.
1 change: 1 addition & 0 deletions doc/how_to/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,4 @@ How to guides
get_started
analyse_neuropixels
handle_drift
load_matlab_data
100 changes: 100 additions & 0 deletions doc/how_to/load_matlab_data.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
Exporting MATLAB Data to Binary & Loading in SpikeInterface
===========================================================

In this tutorial, we will walk through the process of exporting data from MATLAB in a binary format and subsequently loading it using SpikeInterface in Python.

Exporting Data from MATLAB
--------------------------

Begin by ensuring your data structure is correct. Organize your data matrix so that the first dimension corresponds to samples/time and the second to channels.
Here, we present a MATLAB code that creates a random dataset and writes it to a binary file as an illustration.

.. code-block:: matlab
% Define the size of your data
numSamples = 1000;
numChannels = 384;
% Generate random data as an example
data = rand(numSamples, numChannels);
% Write the data to a binary file
fileID = fopen('your_data_as_a_binary.bin', 'wb');
fwrite(fileID, data, 'double');
fclose(fileID);
.. note::

In your own script, replace the random data generation with your actual dataset.

Loading Data in SpikeInterface
------------------------------

After executing the above MATLAB code, a binary file named `your_data_as_a_binary.bin` will be created in your MATLAB directory. To load this file in Python, you'll need its full path.

Use the following Python script to load the binary data into SpikeInterface:

.. code-block:: python
import spikeinterface as si
from pathlib import Path
# Define file path
# For Linux or macOS:
file_path = Path("/The/Path/To/Your/Data/your_data_as_a_binary.bin")
# For Windows:
# file_path = Path(r"c:\path\to\your\data\your_data_as_a_binary.bin")
# Confirm file existence
assert file_path.is_file(), f"Error: {file_path} is not a valid file. Please check the path."
# Define recording parameters
sampling_frequency = 30_000.0 # Adjust according to your MATLAB dataset
num_channels = 384 # Adjust according to your MATLAB dataset
dtype = "float64" # MATLAB's double corresponds to Python's float64
# Load data using SpikeInterface
recording = si.read_binary(file_path, sampling_frequency=sampling_frequency,
num_channels=num_channels, dtype=dtype)
# Confirm that the data was loaded correctly by comparing the data shapes and see they match the MATLAB data
print(recording.get_num_frames(), recording.get_num_channels())
Follow the steps above to seamlessly import your MATLAB data into SpikeInterface. Once loaded, you can harness the full power of SpikeInterface for data processing, including filtering, spike sorting, and more.

Common Pitfalls & Tips
----------------------

1. **Data Shape**: Make sure your MATLAB data matrix's first dimension is samples/time and the second is channels. If your time is in the second dimension, use `time_axis=1` in `si.read_binary()`.
2. **File Path**: Always double-check the Python file path.
3. **Data Type Consistency**: Ensure data types between MATLAB and Python are consistent. MATLAB's `double` is equivalent to Numpy's `float64`.
4. **Sampling Frequency**: Set the appropriate sampling frequency in Hz for SpikeInterface.
5. **Transition to Python**: Moving from MATLAB to Python can be challenging. For newcomers to Python, consider reviewing numpy's [Numpy for MATLAB Users](https://numpy.org/doc/stable/user/numpy-for-matlab-users.html) guide.

Using gains and offsets for integer data
----------------------------------------

Raw data formats often store data as integer values for memory efficiency. To give these integers meaningful physical units, you can apply a gain and an offset.
In SpikeInterface, you can use the `gain_to_uV` and `offset_to_uV` parameters, since traces are handled in microvolts (uV). Both parameters can be integrated into the `read_binary` function.
If your data in MATLAB is stored as `int16`, and you know the gain and offset, you can use the following code to load the data:

.. code-block:: python
sampling_frequency = 30_000.0 # Adjust according to your MATLAB dataset
num_channels = 384 # Adjust according to your MATLAB dataset
dtype_int = 'int16' # Adjust according to your MATLAB dataset
gain_to_uV = 0.195 # Adjust according to your MATLAB dataset
offset_to_uV = 0 # Adjust according to your MATLAB dataset
recording = si.read_binary(file_path, sampling_frequency=sampling_frequency,
num_channels=num_channels, dtype=dtype_int,
gain_to_uV=gain_to_uV, offset_to_uV=offset_to_uV)
recording.get_traces(return_scaled=True) # Return traces in micro volts (uV)
This will equip your recording object with capabilities to convert the data to float values in uV using the :code:`get_traces()` method with the :code:`return_scaled` parameter set to :code:`True`.

.. note::

The gain and offset parameters are usually format dependent and you will need to find out the correct values for your data format. You can load your data without gain and offset but then the traces will be in integer values and not in uV.

0 comments on commit ceaebfa

Please sign in to comment.