Skip to content

Commit

Permalink
Update Readme.md
Browse files Browse the repository at this point in the history
  • Loading branch information
montyvesselinov authored Dec 15, 2023
1 parent 0acfd4f commit a8232e6
Showing 1 changed file with 7 additions and 44 deletions.
51 changes: 7 additions & 44 deletions Readme.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
# LoadTensorDecompositions

**LoadTensorDecompositions** is a module required by [NTFk](https://github.com/TensorDecompositions/NTFk.jl). For more information, visit [tensors.lanl.gov](http://tensors.lanl.gov)
**LoadTensorDecompositions** is a module of **SmartTensors**.

### Tensor Decomposition
## Tensor Decomposition

**NTFk** performs a novel unsupervised Machine Learning (ML) method based on Tensor Decomposition coupled with sparsity and nonnegativity constraints.

Expand Down Expand Up @@ -46,7 +46,7 @@ A popular approach is to add sparsity and nonnegative constraints.
Sparsity constraints on the elements of G reduce the number of features and their mixing (by having as many zero entries as possible).
Nonnegativity enforces parts-based representation of the original data which also allows the Tensor Decomposition results for <img src="https://latex.codecogs.com/svg.latex?\Large&space;G" /> and <img src="https://latex.codecogs.com/svg.latex?\Large&space;A_1,A_2,\ldots,A_n" /> to be easily interrelated [Cichocki et al, 2009](https://books.google.com/books?hl=en&lr=&id=KaxssMiWgswC&oi=fnd&pg=PR5&ots=Lta2adM6LV&sig=jNPDxjKlON1U3l46tZAYH92mvAE#v=onepage&q&f=false).

### Publications:
## Publications:

- Vesselinov, V.V., Mudunuru, M., Karra, S., O'Malley, D., Alexandrov, B.S., Unsupervised Machine Learning Based on Non-Negative Tensor Factorization for Analyzing Reactive-Mixing, 10.1016/j.jcp.2019.05.039, Journal of Computational Physics, 2019. [PDF](https://gitlab.com/monty/monty.gitlab.io/raw/master/papers/Vesselinov%20et%20al%202018%20Unsupervised%20Machine%20Learning%20Based%20on%20Non-Negative%20Tensor%20Factorization%20for%20Analyzing%20Reactive-Mixing.pdf)
- Vesselinov, V.V., Alexandrov, B.S., O'Malley, D., Nonnegative Tensor Factorization for Contaminant Source Identification, Journal of Contaminant Hydrology, 10.1016/j.jconhyd.2018.11.010, 2018. [PDF](https://gitlab.com/monty/monty.gitlab.io/raw/master/papers/Vesselinov%20et%20al%202018%20Nonnegative%20Tensor%20Factorization%20for%20Contaminant%20Source%20Identification.pdf)
Expand All @@ -59,7 +59,7 @@ Nonnegativity enforces parts-based representation of the original data which als

Research papers are also available at [Google Scholar](http://scholar.google.com/citations?user=sIFHVvwAAAAJ&hl=en), [ResearchGate](https://www.researchgate.net/profile/Velimir_Vesselinov) and [Academia.edu](https://lanl.academia.edu/monty)

### Presentations:
## Presentations:

- Vesselinov, V.V., Physics-Informed Machine Learning Methods for Data Analytics and Model Diagnostics, M3 NASA DRIVE Workshop, Los Alamos, 2019. [PDF](http://monty.gitlab.io/presentations/Vesselinov%202019%20Physics-Informed%20Machine%20Learning%20Methods%20for%20Data%20Analytics%20and%20Model%20Diagnostics.pdf)
- Vesselinov, V.V., Unsupervised Machine Learning Methods for Feature Extraction, New Mexico Big Data &amp; Analytics Summit, Albuquerque, 2019. [PDF](http://monty.gitlab.io/presentations/vesselinov%202019%20Unsupervised%20Machine%20Learning%20Methods%20for%20Feature%20Extraction%20LA-UR-19-21450.pdf)
Expand All @@ -72,7 +72,7 @@ Research papers are also available at [Google Scholar](http://scholar.google.com

Presentations are also available at [slideshare.net](https://www.slideshare.net/VelimirmontyVesselin), [ResearchGate](https://www.researchgate.net/profile/Velimir_Vesselinov) and [Academia.edu](https://lanl.academia.edu/monty)

### Videos:
## Videos:

- Progress of nonnegative matrix factorization process:

Expand All @@ -82,51 +82,14 @@ Presentations are also available at [slideshare.net](https://www.slideshare.net/

Videos are also available at [YouTube](https://www.youtube.com/playlist?list=PLpVcrIWNlP22LfyIu5MSZ7WHp7q0MNjsj)

### Patent:
## Patent:

Alexandrov, B.S., Vesselinov, V.V., Alexandrov, L.B., Stanev, V., Iliev, F.L., Source identification by non-negative matrix factorization combined with semi-supervised clustering, [US20180060758A1](https://patents.google.com/patent/US20180060758A1/en)

For more information, visit [monty.gitlab.io](http://monty.gitlab.io)

### Examples:
## Examples:

* [Machine Learning](https://madsjulia.github.io/Mads.jl/Examples/machine_learning/index.html)
* [Blind Source Separation (i.e. Feature Extraction)](https://madsjulia.github.io/Mads.jl/Examples/blind_source_separation/index.html)
* [Source Identification](https://madsjulia.github.io/Mads.jl/Examples/contaminant_source_identification/index.html)

Installation behind a firewall
------------------------------

Julia uses git for package management. Add in the `.gitconfig` file in your home directory:

```
[url "https://"]
insteadOf = git://
```

or execute:

```
git config --global url."https://".insteadOf git://
```

Julia uses git and curl to install packages. Set proxies:

```
export ftp_proxy=http://proxyout.<your_site>:8080
export rsync_proxy=http://proxyout.<your_site>:8080
export http_proxy=http://proxyout.<your_site>:8080
export https_proxy=http://proxyout.<your_site>:8080
export no_proxy=.<your_site>
```

For example, if you are doing this at LANL, you will need to execute the
following lines in your bash command-line environment:

```
export ftp_proxy=http://proxyout.lanl.gov:8080
export rsync_proxy=http://proxyout.lanl.gov:8080
export http_proxy=http://proxyout.lanl.gov:8080
export https_proxy=http://proxyout.lanl.gov:8080
export no_proxy=.lanl.gov
```

0 comments on commit a8232e6

Please sign in to comment.