Skip to content

Sixkplus/TapLab

Repository files navigation

TapLab-torch

This project aims at providing a fast, modular implementation for semantic segmentation inference models.

Environment

We conducted experiments in the following environment:

  • Linux
  • Python 3.6
  • FFmpeg
  • pytorch 1.2

0. Build the data loader to extract MV and Res

First, build the dataloader according to GETTING_STARTED

1. Demo

Take the demo video in Cityscapes stuttgart_00.avi as an example.

1.0. Download the checkpoint

We use BiSeNet(pytorch version) as the per-frame model. Download the checkpoint and put it in the root dir ./

You can choose other models as listed in TorchSeg.

1.1. Offline inference (recommend)

Extract and store the motion vectors, then load them in the inference phase.

  • Decode the video to extract the motion vectors, residuals and RGB frames. python decode.py. The files are generated in ./stuttgart_00
  • python demo_offline.py --rgc --rgfs
  • Results are listed in ./stuttgart_00/output/

1.2. Online inferecne

Extract motion vectors and residuals online and then infer.

  • python demo_online.py --rgc --rgfs
  • The per-frame results are generated in ./stuttgart_00/output/

2. For evaluation

We also offer an inference script for evalutation on the cityscapes dataset.

2.0. Preperation

  • Download leftImg8bit_sequence_trainvaltest.zip from the official website.
  • Generate video from the sequences. python image2video_12.py
  • Extract motion vectors and residuals using decode.py
  • We provide an example(lindau_000000_000019_leftImg8bit) of how the extracted files should be put in ./val_sequence.
.
├── l
│   └── lindau_000000_000019_leftImg8bit
│       ├── mv_cont
│       │   ├── frame0.png
│       │   ├── frame1.png
│       │   ├── frame2.png
│       │   ├── frame3.png
│       │   ├── frame4.png
│       │   ├── frame5.png
│       │   ├── frame6.png
│       │   ├── frame7.png
│       │   ├── frame8.png
│       │   ├── frame9.png
│       │   ├── frame10.png
│       │   └── frame11.png
│       └── res_cont
│           ├── frame0.png
│           ├── frame1.png
│           ├── frame2.png
│           ├── frame3.png
│           ├── frame4.png
│           ├── frame5.png
│           ├── frame6.png
│           ├── frame7.png
│           ├── frame8.png
│           ├── frame9.png
│           ├── frame10.png
│           └── frame11.png
└── lindau
    ├── lindau_000000_000000_leftImg8bit.png
    ├── lindau_000000_000001_leftImg8bit.png
    ├── lindau_000000_000002_leftImg8bit.png
    ├── lindau_000000_000003_leftImg8bit.png
    ├── lindau_000000_000004_leftImg8bit.png
    ├── lindau_000000_000005_leftImg8bit.png
    ├── lindau_000000_000006_leftImg8bit.png
    ├── lindau_000000_000007_leftImg8bit.png
    ├── lindau_000000_000008_leftImg8bit.png
    ├── lindau_000000_000009_leftImg8bit.png
    ├── lindau_000000_000010_leftImg8bit.png
    ├── lindau_000000_000011_leftImg8bit.png
    ├── lindau_000000_000012_leftImg8bit.png
    ├── lindau_000000_000013_leftImg8bit.png
    ├── lindau_000000_000014_leftImg8bit.png
    ├── lindau_000000_000015_leftImg8bit.png
    ├── lindau_000000_000016_leftImg8bit.png
    ├── lindau_000000_000017_leftImg8bit.png
    ├── lindau_000000_000018_leftImg8bit.png
    ├── lindau_000000_000019_leftImg8bit.png
    ├── lindau_000000_000020_leftImg8bit.png
    ├── lindau_000000_000021_leftImg8bit.png
    ├── lindau_000000_000022_leftImg8bit.png
    ├── lindau_000000_000023_leftImg8bit.png
    ├── lindau_000000_000024_leftImg8bit.png
    ├── lindau_000000_000025_leftImg8bit.png
    ├── lindau_000000_000026_leftImg8bit.png
    ├── lindau_000000_000027_leftImg8bit.png
    ├── lindau_000000_000028_leftImg8bit.png
    └── lindau_000000_000029_leftImg8bit.png

2.1. Inference (offline)

  • python infer_ffw_rgc_rgfs.py --rgc --rgfs --gop 12
  • The results are generated in ./Test_id, you can use them to evaluate the accuracy(mIoU).

Citation

The following are BibTeX references. The BibTeX entry requires the url LaTeX package.

Please consider citing the paper and the related projects in your publications if it helps your research.

@article{feng2020taplab,
  title={TapLab: A Fast Framework for Semantic Video Segmentation Tapping into Compressed-Domain Knowledge},
  author={Feng, Junyi and Li, Songyuan and Li, Xi and Wu, Fei and Tian, Qi and Yang, Ming-Hsuan and Ling, Haibin},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2020},
  publisher={IEEE}
}
@misc{TapLab-torch,
  author =       {Feng, Junyi},
  title =        {TapLab},
  howpublished = {\url{https://github.com/Sixkplus/TapLab}},
  year =         {2020}
}
@misc{torchseg2019,
  author =       {Yu, Changqian},
  title =        {TorchSeg},
  howpublished = {\url{https://github.com/ycszen/TorchSeg}},
  year =         {2019}
}
@misc{coviar-torch,
  author =       {Wu, Chao-Yuan},
  title =        {pytorch-coviar},
  howpublished = {\url{https://github.com/chaoyuaw/pytorch-coviar}},
  year =         {2018}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published