Skip to content

Commit

Permalink
Support custom callbacks in Langchain agents + streaming demo
Browse files Browse the repository at this point in the history
  • Loading branch information
whimo committed Aug 30, 2024
1 parent 5b007b9 commit 803722b
Show file tree
Hide file tree
Showing 8 changed files with 286 additions and 4 deletions.
1 change: 1 addition & 0 deletions docs/source/examples.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,4 +9,5 @@ Examples
examples/research_agent
examples/validating_agent_output
examples/advanced_output_handling
examples/streaming_agent_output
autogen
2 changes: 1 addition & 1 deletion docs/source/examples/research_agent.nblink
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
{
"path": "../../../examples/Multi-step research agent.ipynb"
}
}
3 changes: 3 additions & 0 deletions docs/source/examples/streaming_agent_output.nblink
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
{
"path": "../../../examples/Streaming agent output.ipynb"
}
255 changes: 255 additions & 0 deletions examples/Streaming agent output.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,255 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Streaming agent output\n",
"\n",
"In some applications, especially where humans are involved, output streaming can be useful for improving responsiveness. LLMs can take a while to generate output, and if there is a human on the other end, it would be much better if he'll instantly see the output being generated in real time, rather than wait for 30 seconds for the output to be fully generated and displayed.\n",
"\n",
"We'll demonstrate how this can be achieved in motleycrew using Langchain callbacks. In the first example, we'll stream agent output to the console while it solves a task inside a crew. The second example will show a standalone agent that asynchronously streams its output to a web client using WebSockets.\n",
"\n",
"Please note that streaming in this fashion is currently only possible with Langchain-based agents. Please file a GitHub issue if you'd like to see other frameworks supported."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain.tools import DuckDuckGoSearchRun\n",
"from langchain.callbacks.base import BaseCallbackHandler\n",
"\n",
"from motleycrew import MotleyCrew\n",
"from motleycrew.tasks import SimpleTask\n",
"from motleycrew.agents.langchain import ReActToolCallingMotleyAgent"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For observing the output in real time, we'll use a callback that prints the output tokens as they come in from the LLM."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"class CommandLineCallbackHandler(BaseCallbackHandler):\n",
" def on_llm_new_token(self, token: str, **kwargs) -> None:\n",
" print(token, end=\"\", flush=True)\n",
"\n",
" def on_llm_end(self, response, **kwargs) -> None:\n",
" print()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"agent = ReActToolCallingMotleyAgent(\n",
" tools=[DuckDuckGoSearchRun()],\n",
" runnable_config={\"callbacks\": [CommandLineCallbackHandler()]},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Thought: To provide a brief report on the latest AI advancements in 2024, I need to gather information on recent developments, breakthroughs, and trends in AI for this year. I will use DuckDuckGo Search to find relevant articles and reports.\n",
"\n",
"I will perform a search query to gather the latest information on AI advancements in 2024.\n",
"\n",
"\n",
"Thought: The search results provide some insights into the latest AI advancements in 2024, including trends and technologies. I will summarize the key points from the information gathered to create a brief report.\n",
"\n",
"Final Answer: \n",
"\n",
"### Brief Report on the Latest AI Advancements in 2024\n",
"\n",
"1. **Generative AI for Everyday Use**:\n",
" - Generative AI is becoming more accessible and useful for non-technical users. This year, there is a significant increase in people experimenting with various small AI models.\n",
"\n",
"2. **Top AI Trends**:\n",
" - **Multimodal AI**: This technology goes beyond traditional single-mode data processing, integrating multiple types of data (e.g., text, images, audio) to create more sophisticated AI models.\n",
" - **Ethics and Safety**: There is a growing emphasis on ethical AI development and deployment, with a focus on safety and compliance with evolving regulatory standards.\n",
"\n",
"3. **Breakthrough Technologies**:\n",
" - According to MIT Technology Review, AI continues to be a major area of innovation, with several technologies identified as having the potential to significantly impact our lives.\n",
"\n",
"4. **Industry Leaders**:\n",
" - Companies like Google, Meta, Microsoft, and OpenAI are at the forefront of AI advancements, continuously pushing the boundaries of what AI can achieve.\n",
"\n",
"5. **Integration into Daily Life**:\n",
" - Since the release of OpenAI's ChatGPT, AI has been increasingly integrated into daily activities, making it a seamless part of everyday life.\n",
"\n",
"These advancements reflect a deepening sophistication in AI technologies and a cautious approach to their development and deployment, ensuring they are both innovative and responsible.\n"
]
},
{
"data": {
"text/plain": [
"[TaskUnit(status=done)]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"crew = MotleyCrew()\n",
"task = SimpleTask(\n",
" crew=crew,\n",
" agent=agent,\n",
" description=\"Conduct a brief report about the latest AI advancements in 2024.\",\n",
")\n",
"crew.run()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Streaming agent output to a web client using WebSockets\n",
"\n",
"In real applications, it's more likely that you'll want to connect an agent to a client via some protocol. WebSockets are a common choice for tasks like this, because they allow robust low-latency communication between the client and server.\n",
"\n",
"We'll create a simple web app with FastAPI that allows you to send messages to the agent and see the output in real time."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from fastapi import FastAPI, WebSocket\n",
"from fastapi.responses import HTMLResponse\n",
"import uvicorn"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"class WebSocketCallbackHandler(BaseCallbackHandler):\n",
" def __init__(self, websocket):\n",
" self.websocket = websocket\n",
"\n",
" async def on_llm_new_token(self, token: str, **kwargs) -> None:\n",
" await self.websocket.send_json({\"type\": \"token\", \"content\": token})"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"app = FastAPI()\n",
"\n",
"@app.get(\"/\")\n",
"async def get():\n",
" html_content = \"\"\"\n",
" <!DOCTYPE html>\n",
" <html>\n",
" <head>\n",
" <title>motleycrew streaming demo</title>\n",
" </head>\n",
" <body>\n",
" <h1>motleycrew streaming demo</h1>\n",
" <input type=\"text\" id=\"message\" placeholder=\"Enter your message\">\n",
" <button onclick=\"sendMessage()\">Send message</button>\n",
" <div id=\"response\" style=\"white-space: pre-wrap; word-break: break-word; width: 100%;\"></div>\n",
" <script>\n",
" var socket = new WebSocket(\"ws://localhost:8000/ws\");\n",
" socket.onmessage = function(event) {\n",
" var data = JSON.parse(event.data);\n",
" if (data.type === \"token\") {\n",
" document.getElementById(\"response\").textContent += data.content;\n",
" }\n",
" };\n",
" function sendMessage() {\n",
" var message = document.getElementById(\"message\").value;\n",
" socket.send(message);\n",
" document.getElementById(\"response\").textContent = \"\";\n",
" }\n",
" </script>\n",
" </body>\n",
" </html>\n",
" \"\"\"\n",
" return HTMLResponse(content=html_content)\n",
"\n",
"\n",
"@app.websocket(\"/ws\")\n",
"async def websocket_endpoint(websocket: WebSocket):\n",
" await websocket.accept()\n",
" while True:\n",
" message = await websocket.receive_text()\n",
"\n",
" agent = ReActToolCallingMotleyAgent(\n",
" tools=[DuckDuckGoSearchRun()],\n",
" runnable_config={\"callbacks\": [WebSocketCallbackHandler(websocket)]},\n",
" )\n",
"\n",
" await websocket.send_text(\"Agent response:\\n\")\n",
" await agent.ainvoke({\"prompt\": message})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config = uvicorn.Config(app)\n",
"server = uvicorn.Server(config)\n",
"await server.serve()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now you can open http://localhost:8000/ in your browser and send messages to the agent. You should see the output generated in real time."
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
17 changes: 16 additions & 1 deletion motleycrew/agents/langchain/langchain.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from langchain.agents import AgentExecutor
from langchain_core.chat_history import InMemoryChatMessageHistory
from langchain_core.runnables import RunnableConfig
from langchain_core.runnables.config import merge_configs
from langchain_core.runnables.history import RunnableWithMessageHistory, GetSessionHistoryCallable
from langchain_core.prompts.chat import ChatPromptTemplate

Expand All @@ -28,6 +29,7 @@ def __init__(
output_handler: MotleySupportedTool | None = None,
chat_history: bool | GetSessionHistoryCallable = True,
input_as_messages: bool = False,
runnable_config: RunnableConfig | None = None,
verbose: bool = False,
):
"""
Expand Down Expand Up @@ -69,6 +71,9 @@ def __init__(
input_as_messages: Whether the agent expects a list of messages as input instead of a single string.
runnable_config: Default Langchain config to use when invoking the agent.
It can be used to add callbacks, metadata, etc.
verbose: Whether to log verbose output.
"""
super().__init__(
Expand All @@ -90,6 +95,7 @@ def __init__(
self.get_session_history_callable = chat_history

self.input_as_messages = input_as_messages
self.runnable_config = runnable_config

def materialize(self):
"""Materialize the agent and wrap it in RunnableWithMessageHistory if needed."""
Expand Down Expand Up @@ -147,6 +153,7 @@ def invoke(
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Any:
config = merge_configs(self.runnable_config, config)
prompt = self.prepare_for_invocation(input=input, prompt_as_messages=self.input_as_messages)

config = add_default_callbacks_to_langchain_config(config)
Expand All @@ -166,6 +173,7 @@ def from_agent(
description: str | None = None,
prompt_prefix: str | None = None,
tools: Sequence[MotleySupportedTool] | None = None,
runnable_config: RunnableConfig | None = None,
verbose: bool = False,
) -> "LangchainMotleyAgent":
"""Create a LangchainMotleyAgent from a :class:`langchain.agents.AgentExecutor` instance.
Expand All @@ -187,6 +195,9 @@ def from_agent(
tools: Tools to add to the agent.
runnable_config: Default Langchain config to use when invoking the agent.
It can be used to add callbacks, metadata, etc.
verbose: Whether to log verbose output.
"""
# TODO: do we really need to unite the tools implicitly like this?
Expand All @@ -197,7 +208,11 @@ def from_agent(
tools = list(tools or []) + list(agent.tools or [])

wrapped_agent = LangchainMotleyAgent(
prompt_prefix=prompt_prefix, description=description, tools=tools, verbose=verbose
prompt_prefix=prompt_prefix,
description=description,
tools=tools,
runnable_config=runnable_config,
verbose=verbose,
)
wrapped_agent._agent = agent
return wrapped_agent
4 changes: 4 additions & 0 deletions motleycrew/agents/langchain/legacy_react.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ def __init__(
handle_parsing_errors: bool = True,
handle_tool_errors: bool = True,
llm: BaseLanguageModel | None = None,
runnable_config: RunnableConfig | None = None,
verbose: bool = False,
):
"""
Expand All @@ -54,6 +55,8 @@ def __init__(
handle_parsing_errors: Whether to handle parsing errors.
handle_tool_errors: Whether to handle tool errors.
llm: Language model to use.
runnable_config: Default Langchain config to use when invoking the agent.
It can be used to add callbacks, metadata, etc.
verbose: Whether to log verbose output.
"""
if prompt is None:
Expand Down Expand Up @@ -96,5 +99,6 @@ def agent_factory(
tools=tools,
output_handler=output_handler,
chat_history=chat_history,
runnable_config=runnable_config,
verbose=verbose,
)
6 changes: 5 additions & 1 deletion motleycrew/agents/langchain/tool_calling_react.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,7 @@ def __init__(
llm: BaseChatModel | None = None,
max_iterations: int | None = Defaults.DEFAULT_REACT_AGENT_MAX_ITERATIONS,
intermediate_steps_processor: Callable | None = None,
runnable_config: RunnableConfig | None = None,
verbose: bool = False,
):
"""
Expand All @@ -139,10 +140,12 @@ def __init__(
handle_tool_errors: Whether to handle tool errors.
If True, `handle_tool_error` and `handle_validation_error` in all tools
are set to True.
llm: Language model to use.
max_iterations: The maximum number of agent iterations.
intermediate_steps_processor: Function that modifies the intermediate steps array
in some way before each agent iteration.
llm: Language model to use.
runnable_config: Default Langchain config to use when invoking the agent.
It can be used to add callbacks, metadata, etc.
verbose: Whether to log verbose output.
Prompt:
Expand Down Expand Up @@ -205,5 +208,6 @@ def agent_factory(
output_handler=output_handler,
chat_history=chat_history,
input_as_messages=True,
runnable_config=runnable_config,
verbose=verbose,
)
Loading

0 comments on commit 803722b

Please sign in to comment.