-
-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added StaticArrays extension for expv method
* Added ext/ExponentialUtilitiesStaticArraysExt.jl, which computes the exponential matrix-vector product efficiently when using StaticArrays. * Updated authors list, version #, and uuid in Project.toml. * Changed == nothing and === nothing to isnothing.
- Loading branch information
Showing
6 changed files
with
174 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3,4 +3,5 @@ | |
*.jl.mem | ||
deps/deps.jl | ||
Manifest.toml | ||
.vscode | ||
.vscode | ||
.DS_Store |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,7 @@ | ||
name = "ExponentialUtilities" | ||
uuid = "d4d017d3-3776-5f7e-afef-a10c40355c18" | ||
authors = ["Chris Rackauckas <[email protected]>"] | ||
version = "1.26.1" | ||
uuid = "3927d2ad-0af0-4d29-8d72-bf799b39c66b" | ||
authors = ["Chris Rackauckas <[email protected]>", "José E. Cruz Serrallés <[email protected]>"] | ||
version = "1.27.0" | ||
|
||
[deps] | ||
Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" | ||
|
@@ -14,6 +14,12 @@ Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7" | |
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" | ||
libblastrampoline_jll = "8e850b90-86db-534c-a0d3-1478176c7d93" | ||
|
||
[weakdeps] | ||
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" | ||
|
||
[extensions] | ||
ExponentialUtilitiesStaticArraysExt = "StaticArrays" | ||
|
||
[compat] | ||
Adapt = "3.4.0, 4" | ||
Aqua = "0.8" | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
#= | ||
Based on | ||
Al-Mohy, A. H., & Higham, N. J. (2011). "Computing the action of the matrix exponential, with | ||
an application to exponential integrators". SIAM journal on scientific computing, 33(2), 488-511. | ||
=# | ||
module ExponentialUtilitiesStaticArraysExt | ||
|
||
export default_tolerance,theta,THETA32,THETA64 | ||
|
||
using StaticArrays | ||
import Base: @propagate_inbounds | ||
import LinearAlgebra: tr,I,opnorm,norm | ||
import ExponentialUtilities | ||
|
||
# Look-Up Table Generation | ||
default_tolerance(::Type{T}) where {T <: AbstractFloat} = eps(T)/2 | ||
@inline function trexp(M::Integer,x::T) where {T} | ||
y = T <: BigInt ? one(BigFloat) : T <: Integer ? one(Float64) : one(T) | ||
for m ∈ M:-1:1 | ||
y = 1+x/m*y | ||
end | ||
return y | ||
end | ||
h(M::Integer,x::Number) = log(exp(-x)*trexp(M,x)) | ||
h̃(M::Integer,x::Number) = ifelse(isodd(M),-1,1)*h(M,-x) | ||
function θf((M,ϵ)::Tuple{<:Integer,<:Number},x::Number) | ||
return h̃(M+1,x)/x-ϵ | ||
end | ||
θf(M::Integer,ϵ::Number) = Base.Fix1(θf,(M,ϵ)) | ||
function θfp(M::Integer,x::Number) | ||
Tk = trexp(M+1,-x) | ||
Tkm1 = trexp(M,-x) | ||
return ifelse(isodd(M),-1,1)/x^2*(log(Tk)+x*Tkm1/Tk) | ||
end | ||
θfp(M::Integer) = Base.Fix1(θfp,M) | ||
|
||
function newton_find_zero(f::Function,dfdx::Function,x0::Real;xrtol::Real=eps(typeof(x0))/2,maxiter::Integer=100) | ||
0 ≤ xrtol ≤ 1 || throw(DomainError(xrtol,"relative tolerance in x must be in [0,1]")) | ||
maxiter > 0 || throw(DomainError(maxiter,"maxiter should be a positive integer")) | ||
x, xp = x0, typemax(x0) | ||
for _ ∈ 1:maxiter | ||
xp = x | ||
x -= f(x)/dfdx(x) | ||
if abs(x-xp) ≤ xrtol*max(x,xp) || !isfinite(x) | ||
break | ||
end | ||
end | ||
return x | ||
end | ||
function calc_thetas(m_max::Integer,::Type{T};tol::T=default_tolerance(T)) where {T <: AbstractFloat} | ||
m_max > 0 || throw(DomainError(m_max,"argument m_max must be positive")) | ||
ϵ = BigFloat(tol) | ||
θ = Vector{T}(undef,m_max+1) | ||
@inbounds θ[1] = eps(T) | ||
@inbounds for m=1:m_max | ||
θ[m+1] = newton_find_zero(θf(m,ϵ),θfp(m),big(θ[m]),xrtol=ϵ) | ||
end | ||
return θ | ||
end | ||
|
||
const P_MAX = 8 | ||
const M_MAX = 55 | ||
const THETA32 = Tuple(calc_thetas(M_MAX,Float32)) | ||
const THETA64 = Tuple(calc_thetas(M_MAX,Float64)) | ||
|
||
@propagate_inbounds theta(::Type{Float64},m::Integer) = THETA64[m] | ||
@propagate_inbounds theta(::Type{Float32},m::Integer) = THETA32[m] | ||
@propagate_inbounds theta(::Type{Complex{T}},m::Integer) where {T} = theta(T,m) | ||
@propagate_inbounds theta(::Type{T},::Integer) where {T} = throw(DomainError(T,"type must be either Float32 or Float64")) | ||
@propagate_inbounds theta(x::Number,m::Integer) = theta(typeof(x),m) | ||
|
||
# runtime parameter search | ||
@propagate_inbounds @inline function calculate_s(α::T,m::I)::I where {T <: Number,I <: Integer} | ||
return ceil(I,α/theta(T,m)) | ||
end | ||
@propagate_inbounds @inline function parameter_search(nA::Number,m::I)::I where {I <: Integer} | ||
return m*calculate_s(nA,m) | ||
end | ||
@propagate_inbounds @inline function parameters(A::SMatrix{N,N,T})::Tuple{Int,Int} where {N,T} | ||
1 ≤ N ≤ 50 || throw(DomainError(N,"leading dimension of A must be ≤ 50; larger matrices require Higham's 1-norm estimation algorithm")) | ||
nA = opnorm(A,1) | ||
iszero(nA) && return (0,1) | ||
@inbounds if nA ≤ 4theta(T,M_MAX)*P_MAX*(P_MAX+3)/(M_MAX*1) | ||
mo = argmin(Base.Fix1(parameter_search,nA),1:M_MAX) | ||
s = calculate_s(nA,mo) | ||
return (mo,s) | ||
else | ||
Aᵐ = A*A | ||
pη = √(opnorm(Aᵐ,1)) | ||
(Cmo::Int,mo::Int) = (typemax(Int),1) | ||
for p ∈ 2:P_MAX | ||
Aᵐ *= A | ||
η = opnorm(Aᵐ,1)^inv(p+1) | ||
α = max(pη,η) | ||
pη = η | ||
(Cmp::Int,mp::Int) = findmin(Base.Fix1(parameter_search,α),p*(p-1)-1:M_MAX) | ||
(Cmo,mo) = min((Cmp,mp),(Cmo,mo)) | ||
end | ||
s = max(Cmo÷mo,1) | ||
return (mo,s) | ||
end | ||
end | ||
|
||
# exponential matrix-vector product for SArray types | ||
""" | ||
expv(t::Number,A::SMatrix{N,N},v::SVector{N};kwarg...) → exp(t*A)*v | ||
Computes the matrix-vector product exp(t*A)*v without forming exp(t*A) explicitly. | ||
This implementation is based on the algorithm presented in Al-Mohy & Higham (2011). | ||
Presently, the relative tolerance is fixed to eps(T)/2 where T is the type of the | ||
output. | ||
""" | ||
@propagate_inbounds function ExponentialUtilities.expv(t::Number,A::SMatrix{N,N,T},v::SVector{N}; kwarg...) where {N,T} | ||
Ti = promote_type(StaticArrays.arithmetic_closure(T),eltype(v)) | ||
N ≤ 4 && return exp(t*A)*v | ||
Ai::SMatrix{N,N,Ti} = A | ||
|
||
μ = tr(Ai)/N | ||
Ai -= μ*I | ||
Ai *= t | ||
mo, s = parameters(Ai) | ||
F = v | ||
Ai /= s | ||
η = exp(μ*t/s) | ||
ϵ = default_tolerance(T) | ||
for _ ∈ 1:s | ||
c₁ = norm(v,Inf) | ||
for j ∈ 1:mo | ||
v = (Ai*v)/j | ||
F += v | ||
c₂ = norm(v,Inf) | ||
c₁+c₂ ≤ ϵ*norm(F,Inf) && break | ||
c₁ = c₂ | ||
end | ||
F *= η | ||
v = F | ||
all(isfinite,v) || break | ||
end | ||
|
||
return F | ||
end | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters