Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[luci/service] Migrate reshape shape inference rule to sinf::Algorithm #13989

Merged
merged 2 commits into from
Sep 12, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,7 @@ class Algorithm final : public luci::CircleNodeVisitor<loco::TensorShape>
// loco::TensorShape visit(const luci::CircleRelu0To1 *node) final;
// loco::TensorShape visit(const luci::CircleRelu6 *node) final;
// loco::TensorShape visit(const luci::CircleReluN1To1 *node) final;
// loco::TensorShape visit(const luci::CircleReshape *node) final;
loco::TensorShape visit(const luci::CircleReshape *node) final;
// loco::TensorShape visit(const luci::CircleResizeBilinear *node) final;
// loco::TensorShape visit(const luci::CircleResizeNearestNeighbor *node) final;
// loco::TensorShape visit(const luci::CircleReverseSequence *node) final;
Expand Down
87 changes: 0 additions & 87 deletions compiler/luci/service/src/CircleShapeInferenceRule.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -996,84 +996,6 @@ loco::NodeShape infer_range(const luci::CircleRange *node)
return loco::NodeShape{output_shape};
}

loco::NodeShape infer_reshape(const luci::CircleReshape *node)
{
LOGGER(l);

const loco::DataType S32 = loco::DataType::S32;

loco::TensorShape shape_by_input;
{
LUCI_ASSERT(node->shape(), "2nd input shape() should not be nullptr");

// Only support node's shape() is CircleConst with S32
// TODO support other node with other types
auto const_shape_node = dynamic_cast<luci::CircleConst *>(node->shape());
if (const_shape_node != nullptr)
{
LUCI_ASSERT(const_shape_node->dtype() == S32, "Only support int32 CircleConst");

shape_by_input.rank(const_shape_node->size<S32>());

for (uint32_t axis = 0; axis < shape_by_input.rank(); ++axis)
{
shape_by_input.dim(axis) = const_shape_node->at<S32>(axis);
}
}
else
{
// We use shape from the node itself
shape_by_input = own_shape(node);
}
}

loco::TensorShape shape_by_attr;
{
shape_by_attr.rank(node->newShape()->rank());

for (uint32_t axis = 0; axis < shape_by_attr.rank(); ++axis)
{
shape_by_attr.dim(axis) = node->newShape()->dim(axis);
}
}

if (!(shape_by_input == shape_by_attr))
{
INFO(l) << "CircleReshape: Two new shape information mismatched : " << std::endl;
INFO(l) << " shape_by_input : " << shape_by_input << std::endl;
INFO(l) << " shape_by_attr : " << shape_by_attr << std::endl;
}

loco::TensorShape output_shape = shape_by_input;

// One of the dimensions can have special value -1, meaning its actual value should be inferred.
const auto input_shape = luci::shape_get(node->tensor()).as<loco::TensorShape>();
uint32_t input_element_count = 1;
uint32_t output_element_count = 1;
uint32_t unknown_dim_index = UINT32_MAX;
for (uint32_t i = 0; i < input_shape.rank(); ++i)
input_element_count *= (input_shape.dim(i).known() ? input_shape.dim(i).value() : 1);
for (uint32_t dim_index = 0; dim_index < output_shape.rank(); ++dim_index)
{
const uint32_t dim_value = output_shape.dim(dim_index).value();
if (static_cast<int>(dim_value) == -1)
{
LUCI_ASSERT(unknown_dim_index == UINT32_MAX, "More than one unknown dimension");
unknown_dim_index = dim_index;
}
else
{
output_element_count *= dim_value;
}
}
if (unknown_dim_index != UINT32_MAX)
{
output_shape.dim(unknown_dim_index) = input_element_count / output_element_count;
}

return loco::NodeShape{output_shape};
}

template <class CIRCLENODE> loco::NodeShape infer_resize_type(const CIRCLENODE *node)
{
auto input_shape = luci::shape_get(node->input()).template as<loco::TensorShape>();
Expand Down Expand Up @@ -2228,15 +2150,6 @@ class ShapeInferenceAlgorithm final : public luci::CircleNodeVisitor<loco::NodeS
return loco::NodeShape{input_shape};
}

/**
* @note CircleReshape has new shape info in two places: 2nd input and attribute.
* This shape inference uses shape from input 'shape' node when it's constant.
* If not, shape will be from node itself. shape from attribute is not used.
*
* TODO Change this policy when not appropriate
*/
loco::NodeShape visit(const luci::CircleReshape *node) final { return infer_reshape(node); }

loco::NodeShape visit(const luci::CircleResizeBilinear *node) final
{
return infer_resize_type(node);
Expand Down
125 changes: 125 additions & 0 deletions compiler/luci/service/src/Nodes/CircleReshape.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,36 @@
* limitations under the License.
*/

#include "luci/Service/CircleShapeInference.h"
#include "Check.h"

#include "CircleShapeInferenceHelper.h"
#include "CircleCloneNode.h"

#include <luci/Log.h>

namespace
{

std::ostream &operator<<(std::ostream &os, const loco::TensorShape &tensor_shape)
{
os << "[";
for (uint32_t r = 0; r < tensor_shape.rank(); ++r)
{
if (r)
os << ",";

if (tensor_shape.dim(r).known())
os << tensor_shape.dim(r).value();
else
os << "?";
}
os << "]";
return os;
}
Comment on lines +28 to +43
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

(Not for this PR)

I find out that there are many std::ostream &operator<< overloadings for TensorShape in luci/services.

  • search operator<<(std::ostream &os, const loco::TensorShape in compiler/luci/service/
     compiler/luci/service/src/CircleShapeInference.cpp:
       30  
       31: std::ostream &operator<<(std::ostream &os, const loco::TensorShape &tensor_shape)
       32  {
     
     compiler/luci/service/src/CircleShapeInferenceRule.cpp:
       37  
       38: std::ostream &operator<<(std::ostream &os, const loco::TensorShape &tensor_shape)
       39  {
     
     compiler/luci/service/src/Validate.cpp:
       33  
       34: std::ostream &operator<<(std::ostream &os, const loco::TensorShape &tensor_shape)
       35  {

How about introduce new file name compiler/luci/service/src/logHelper.h and making one implementation?


} // namespace

namespace luci
{

Expand All @@ -34,4 +62,101 @@ luci::CircleNode *CloneNodeLet<CN::OPQR>::visit(const luci::CircleReshape *node)
return cloned;
}

namespace sinf
{

loco::TensorShape Algorithm::visit(const luci::CircleReshape *node)
{
LOGGER(l);

const loco::DataType S32 = loco::DataType::S32;

loco::TensorShape shape_by_input;
{
LUCI_ASSERT(node->shape(), "2nd input shape() should not be nullptr");

// Only support node's shape() is CircleConst with S32
// TODO support other node with other types
auto const_shape_node = dynamic_cast<luci::CircleConst *>(node->shape());
if (const_shape_node != nullptr)
{
LUCI_ASSERT(const_shape_node->dtype() == S32, "Only support int32 CircleConst");

shape_by_input.rank(const_shape_node->size<S32>());

for (uint32_t axis = 0; axis < shape_by_input.rank(); ++axis)
{
shape_by_input.dim(axis) = const_shape_node->at<S32>(axis);
}
}
else
{
// We use shape from the node itself
loco::TensorShape shape;
shape.rank(node->rank());
for (uint32_t r = 0; r < node->rank(); ++r)
{
// TODO remove this copy from `use_own(node);`
// Shape inference rules in this file did not consider unknown dimension.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
// Shape inference rules in this file did not consider unknown dimension.
// TODO remove this copy from `use_own(node);`
// Shape inference rules in this file did not consider unknown dimension.

like #13987 (review)

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I have applied this suggestion. Thanks!

// If some node has unknown dimension, 0 is inserted and wrong shape
// inference was done as a result.
// To fix this, new shape inference algorithm is being implemented.
// Until new inference algorithm is fully implemented, unknown dimension
// would be represented as 1 along with TFLite expression.
shape.dim(r) = node->dim(r).known() ? node->dim(r).value() : 1;
}
shape_by_input = shape;
}
}

loco::TensorShape shape_by_attr;
{
shape_by_attr.rank(node->newShape()->rank());

for (uint32_t axis = 0; axis < shape_by_attr.rank(); ++axis)
{
shape_by_attr.dim(axis) = node->newShape()->dim(axis);
}
}

if (!(shape_by_input == shape_by_attr))
{
INFO(l) << "CircleReshape: Two new shape information mismatched : " << std::endl;
INFO(l) << " shape_by_input : " << shape_by_input << std::endl;
INFO(l) << " shape_by_attr : " << shape_by_attr << std::endl;
}

loco::TensorShape output_shape = shape_by_input;

// One of the dimensions can have special value -1, meaning its actual value should be inferred.
const auto input = loco::must_cast<luci::CircleNode *>(node->tensor());
const auto input_shape = circle_shape(input);
uint32_t input_element_count = 1;
uint32_t output_element_count = 1;
uint32_t unknown_dim_index = UINT32_MAX;
for (uint32_t i = 0; i < input_shape.rank(); ++i)
input_element_count *= (input_shape.dim(i).known() ? input_shape.dim(i).value() : 1);
for (uint32_t dim_index = 0; dim_index < output_shape.rank(); ++dim_index)
{
const uint32_t dim_value = output_shape.dim(dim_index).value();
if (static_cast<int>(dim_value) == -1)
{
LUCI_ASSERT(unknown_dim_index == UINT32_MAX, "More than one unknown dimension");
unknown_dim_index = dim_index;
}
else
{
output_element_count *= dim_value;
}
}
if (unknown_dim_index != UINT32_MAX)
{
output_shape.dim(unknown_dim_index) = input_element_count / output_element_count;
}

return output_shape;
}

} // namespace sinf

} // namespace luci
65 changes: 65 additions & 0 deletions compiler/luci/service/src/Nodes/CircleReshape.test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
*/

#include "luci/Service/CircleNodeClone.h"
#include "luci/Service/CircleShapeInference.h"

#include <gtest/gtest.h>

Expand All @@ -37,3 +38,67 @@ TEST(CloneNodeTest, clone_Reshape)
ASSERT_EQ(node_reshape->newShape()->dim(0), cloned_reshape->newShape()->dim(0));
ASSERT_EQ(node_reshape->newShape()->dim(1), cloned_reshape->newShape()->dim(1));
}

TEST(ShapeRuleTest, reshape_by_input_const_static)
{
auto g = loco::make_graph();
auto node_reshape = g->nodes()->create<luci::CircleReshape>();
auto tensor_input = g->nodes()->create<luci::CircleInput>();
auto shape_by_input = g->nodes()->create<luci::CircleConst>();

tensor_input->dtype(loco::DataType::S32);
tensor_input->shape({2, 3, 4});
tensor_input->shape_status(luci::ShapeStatus::VALID);

shape_by_input->dtype(loco::DataType::S32);
shape_by_input->size<loco::DataType::S32>(2);
shape_by_input->at<loco::DataType::S32>(0) = 6;
shape_by_input->at<loco::DataType::S32>(1) = 4;
shape_by_input->shape_status(luci::ShapeStatus::VALID);

node_reshape->tensor(tensor_input);
node_reshape->shape(shape_by_input);

loco::TensorShape output_shape;
luci::sinf::Rule shape_inf_rule;

ASSERT_TRUE(shape_inf_rule.infer(node_reshape, output_shape));

ASSERT_EQ(2, output_shape.rank());
ASSERT_TRUE(output_shape.dim(0).known());
ASSERT_TRUE(output_shape.dim(1).known());
ASSERT_EQ(6, output_shape.dim(0).value());
ASSERT_EQ(4, output_shape.dim(1).value());
}

TEST(ShapeRuleTest, reshape_by_input_const_dynamic)
{
auto g = loco::make_graph();
auto node_reshape = g->nodes()->create<luci::CircleReshape>();
auto tensor_input = g->nodes()->create<luci::CircleInput>();
auto shape_by_input = g->nodes()->create<luci::CircleConst>();

tensor_input->dtype(loco::DataType::S32);
tensor_input->shape({2, 3, 4});
tensor_input->shape_status(luci::ShapeStatus::VALID);

shape_by_input->dtype(loco::DataType::S32);
shape_by_input->size<loco::DataType::S32>(2);
shape_by_input->at<loco::DataType::S32>(0) = -1;
shape_by_input->at<loco::DataType::S32>(1) = 4;
shape_by_input->shape_status(luci::ShapeStatus::VALID);

node_reshape->tensor(tensor_input);
node_reshape->shape(shape_by_input);

loco::TensorShape output_shape;
luci::sinf::Rule shape_inf_rule;

ASSERT_TRUE(shape_inf_rule.infer(node_reshape, output_shape));

ASSERT_EQ(2, output_shape.rank());
ASSERT_TRUE(output_shape.dim(0).known());
ASSERT_TRUE(output_shape.dim(1).known());
ASSERT_EQ(6, output_shape.dim(0).value());
ASSERT_EQ(4, output_shape.dim(1).value());
}