Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

New save or load functions for the surrogate models using pickle #689

Merged
merged 6 commits into from
Dec 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions smt/surrogate_models/genn.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from jenn.model import NeuralNet

from smt.surrogate_models.surrogate_model import SurrogateModel
from smt.utils import persistence

# The missing type
SMTrainingPoints = Dict[Union[int, None], Dict[int, List[np.ndarray]]]
Expand Down Expand Up @@ -212,6 +213,13 @@ def _train(self):
)
self.model.fit(X, Y, J, **kwargs)

def save(self, filename):
persistence.save(self, filename)

@staticmethod
def load(filename):
return persistence.load(filename)

def _predict_values(self, x):
return self.model.predict(x.T).T

Expand Down
4 changes: 2 additions & 2 deletions smt/surrogate_models/gpx.py
Original file line number Diff line number Diff line change
Expand Up @@ -162,14 +162,14 @@ def predict_variance_gradients(self, x):
Returns all variance gradients at the given x points as a [n, nx] matrix"""
return self._gpx.predict_var_gradients(x)

def save(self, filepath):
def save(self, filename):
"""Save the trained model in the given filepath

Arguments
---------
filename (string): path to the json file
"""
self._gpx.save(filepath)
self._gpx.save(filename)

@staticmethod
def load(filepath):
Expand Down
8 changes: 8 additions & 0 deletions smt/surrogate_models/krg_based.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@

from smt.sampling_methods import LHS
from smt.surrogate_models.surrogate_model import SurrogateModel
from smt.utils import persistence

from smt.kernels import (
SquarSinExp,
Expand Down Expand Up @@ -1870,6 +1871,13 @@ def _predict_variances(
s2[s2 < 0.0] = 0.0
return s2

def save(self, filename):
persistence.save(self, filename)

@staticmethod
def load(filename):
return persistence.load(filename)

def _predict_variance_derivatives(self, x, kx):
"""
Provide the derivatives of the variance of the model at a set of points
Expand Down
8 changes: 8 additions & 0 deletions smt/surrogate_models/ls.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from sklearn import linear_model

from smt.surrogate_models.surrogate_model import SurrogateModel
from smt.utils import persistence
from smt.utils.caching import cached_operation


Expand Down Expand Up @@ -99,3 +100,10 @@ def _predict_derivatives(self, x, kx):
n_eval, n_features_x = x.shape
y = np.ones((n_eval, self.ny)) * self.mod.coef_[:, kx]
return y

def save(self, filename):
persistence.save(self, filename)

@staticmethod
def load(filename):
return persistence.load(filename)
8 changes: 8 additions & 0 deletions smt/surrogate_models/qp.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
import scipy

from smt.surrogate_models.surrogate_model import SurrogateModel
from smt.utils import persistence
from smt.utils.caching import cached_operation
from smt.utils.misc import standardization

Expand Down Expand Up @@ -162,3 +163,10 @@ def _predict_values(self, x):
y = (self.y_mean + self.y_std * y_).ravel()
y = y.reshape((x.shape[0], self.ny))
return y

def save(self, filename):
persistence.save(self, filename)

@staticmethod
def load(filename):
return persistence.load(filename)
6 changes: 6 additions & 0 deletions smt/surrogate_models/surrogate_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -570,3 +570,9 @@ def _check_xdim(self, x):
"""Raise a ValueError if x dimension is not consistent with surrogate model training data dimension.
This method is used as a guard in preamble of predict methods"""
check_nx(self.nx, x)

def save(self, filename):
"""
Implemented by surrogate models to save the surrogate object in a file
"""
raise NotImplementedError("save() has to be implemented by the given surrogate")
87 changes: 87 additions & 0 deletions smt/surrogate_models/tests/test_save_load.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
import os
import unittest
import numpy as np

from smt.problems import Sphere
from smt.sampling_methods import LHS
from smt.surrogate_models import KRG, LS, KPLS, GEKPLS, KPLSK, MGP, QP, SGP, GENN


class TestSaveLoad(unittest.TestCase):
def test_save_load_GEKPLS(self):
filename = "sm_save_test"
fun = Sphere(ndim=2)

sampling = LHS(xlimits=fun.xlimits, criterion="m")
xt = sampling(20)
yt = fun(xt)

for i in range(2):
yd = fun(xt, kx=i)
yt = np.concatenate((yt, yd), axis=1)

X = np.arange(fun.xlimits[0, 0], fun.xlimits[0, 1], 0.25)
Y = np.arange(fun.xlimits[1, 0], fun.xlimits[1, 1], 0.25)
X, Y = np.meshgrid(X, Y)
Z1 = np.zeros((X.shape[0], X.shape[1]))
Z2 = np.zeros((X.shape[0], X.shape[1]))

sm = GEKPLS(print_global=False)
sm.set_training_values(xt, yt[:, 0])
for i in range(2):
sm.set_training_derivatives(xt, yt[:, 1 + i].reshape((yt.shape[0], 1)), i)
sm.train()
for i in range(X.shape[0]):
for j in range(X.shape[1]):
Z1[i, j] = sm.predict_values(
np.hstack((X[i, j], Y[i, j])).reshape((1, 2))
).item()
sm.save(filename)

sm2 = GEKPLS.load(filename)
self.assertIsNotNone(sm2)

for i in range(X.shape[0]):
for j in range(X.shape[1]):
Z2[i, j] = sm2.predict_values(
np.hstack((X[i, j], Y[i, j])).reshape((1, 2))
).item()

np.testing.assert_allclose(Z1, Z2)

os.remove(filename)

def test_save_load_surrogates(self):
surrogates = [KRG, KPLS, KPLSK, MGP, SGP, QP, GENN, LS]
rng = np.random.RandomState(1)
N_inducing = 30
num = 100

xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
yt = np.array([0.0, 1.0, 1.5, 0.9, 1.0])
x = np.linspace(0.0, 4.0, num).reshape(-1, 1)

for surrogate in surrogates:
filename = "sm_save_test"

sm = surrogate(print_global=False)
sm.set_training_values(xt, yt)

if surrogate == SGP:
sm.Z = 2 * rng.rand(N_inducing, 1) - 1
sm.set_inducing_inputs(Z=sm.Z)

sm.train()
y1 = sm.predict_values(x)
sm.save(filename)

sm2 = surrogate.load(filename)
y2 = sm2.predict_values(x)

np.testing.assert_allclose(y1, y2)

os.remove(filename)


if __name__ == "__main__":
unittest.main()
13 changes: 13 additions & 0 deletions smt/utils/persistence.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
import pickle


def save(self, filename):
with open(filename, "wb") as file:
pickle.dump(self, file)


def load(filename):
sm = None
with open(filename, "rb") as file:
sm = pickle.load(file)
return sm
Loading