Skip to content

Commit

Permalink
update readme
Browse files Browse the repository at this point in the history
  • Loading branch information
ziyu-guo committed Nov 13, 2024
1 parent bc24274 commit 5d680b3
Showing 1 changed file with 155 additions and 2 deletions.
157 changes: 155 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,158 @@
# SmoothCache
Implementation of SmoothCache, a project aimed at speeding-up Diffusion Transformer (DiT) based GenAI models with error-guided caching.
<!-- <div align="center">
<img src="https://github.com/Roblox/SmoothCache/blob/main/assets/TeaserFigureFlat.png" width="100%" ></img>
<br>
<em>
(Accelerating Diffusion Transformer inference across multiple modalities with 50 DDIM Steps on DiT-XL-256x256, 100 DPM-Solver++(3M) SDE steps for a 10s audio sample (spectrogram shown) on Stable Audio Open, 30 Rectified Flow steps on Open-Sora 480p 2s videos)
</em>
</div>
<br> -->

![Figure 1. Accelerating Diffusion Transformer inference across multiple modalities with 50 DDIM Steps on DiT-XL-256x256, 100 DPM-Solver++(3M) SDE steps for a 10s audio sample (spectrogram shown) on Stable Audio Open, 30 Rectified Flow steps on Open-Sora 480p 2s videos](assets/TeaserFigureFlat.png)

**Figure 1. Accelerating Diffusion Transformer inference across multiple modalities with 50 DDIM Steps on DiT-XL-256x256, 100 DPM-Solver++(3M) SDE steps for a 10s audio sample (spectrogram shown) on Stable Audio Open, 30 Rectified Flow steps on Open-Sora 480p 2s videos**


# Introduction
We introduce **SmoothCache**, a straightforward acceleration technique for DiT architecture models, that's both **training-free, flexible and performant**. By leveraging layer-wise representation error, our method identifies redundancies in the diffusion process, generates a static caching scheme to reuse output featuremaps and therefore reduces the need for computationally expensive operations. This solution works across different models and modalities, can be easily dropped into existing Diffusion Transformer pipelines, can be stacked on different solvers, and requires no additional training or datasets. **SmoothCache** consistently outperforms various solvers designed to accelerate the diffusion process, while matching or surpassing the performance of existing modality-specific caching techniques.


## Quick Start

### Install
```bash
pip install SmoothCache
```

### Usage

We have implemented drop-in SmoothCache helper classes that easily applies to [Huggingface Diffuser DiTPipeline](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/dit), and [original DiT implementations](https://github.com/facebookresearch/DiT).

Generally, only 3 additional lines needs to be added to the original sampler scripts:
```python
from SmoothCache import <DESIREDCacheHelper>
cache_helper = DiffuserCacheHelper(<MODEL_HANDLER>, schedule=schedule)
cache_helper.enable()
# Original sampler code.
cache_helper.eisable()
```

Usage example with Huggingface Diffuser DiTPipeline:
```python
import json
import torch
from diffusers import DiTPipeline, DPMSolverMultistepScheduler

# Import SmoothCacheHelper
from SmoothCache import DiffuserCacheHelper

# Load the DiT pipeline and scheduler
pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

# Initialize the DiffuserCacheHelper with the model
with open("smoothcache_schedules/50-N-3-threshold-0.35.json", "r") as f:
schedule = json.load(f)
cache_helper = DiffuserCacheHelper(pipe.transformer, schedule=schedule)

# Enable the caching helper
cache_helper.enable()
# Prepare the input
words = ["Labrador retriever"]
class_ids = pipe.get_label_ids(words)

# Generate images with the pipeline
generator = torch.manual_seed(33)
image = pipe(class_labels=class_ids, num_inference_steps=50, generator=generator).images[0]

# Restore the original forward method and disable the helper
# disable() should be paired up with enable()
cache_helper.disable()
```

Usage example with original DiT implementation
```python
import torch

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
from torchvision.utils import save_image
from diffusion import create_diffusion
from diffusers.models import AutoencoderKL
from download import find_model
from models import DiT_models
import argparse
from SmoothCache import DiTCacheHelper # Import DiTCacheHelper
import json

# Setup PyTorch:
torch.manual_seed(args.seed)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"

if args.ckpt is None:
assert (
args.model == "DiT-XL/2"
), "Only DiT-XL/2 models are available for auto-download."
assert args.image_size in [256, 512]
assert args.num_classes == 1000

# Load model:
latent_size = args.image_size // 8
model = DiT_models[args.model](
input_size=latent_size, num_classes=args.num_classes
).to(device)
ckpt_path = args.ckpt or f"DiT-XL-2-{args.image_size}x{args.image_size}.pt"
state_dict = find_model(ckpt_path)
model.load_state_dict(state_dict)
model.eval() # important!
with open("smoothcache_schedules/50-N-3-threshold-0.35.json", "r") as f:
schedule = json.load(f)
cache_helper = DiTCacheHelper(model, schedule=schedule)

# number of timesteps should be consistent with provided schedules
diffusion = create_diffusion(str(len(schedule[cache_helper.components_to_wrap[0]])))

# Enable the caching helper
cache_helper.enable()

# Sample images:
samples = diffusion.p_sample_loop(
model.forward_with_cfg,
z.shape,
z,
clip_denoised=False,
model_kwargs=model_kwargs,
progress=True,
device=device,
)
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
samples = vae.decode(samples / 0.18215).sample

# Disable the caching helper after sampling
cache_helper.disable()
# Save and display images:
save_image(samples, "sample.png", nrow=4, normalize=True, value_range=(-1, 1))
```

## Visualization

(WIP)



## Quantitative Results

### Image Generation with DiT-XL/2-256x256
![Table 1. Results For DiT-XL-256x256 on using DDIM Sampling.
Note that L2C is not training free](assets/table1.png)

### Video Generation with OpenSora
![Table 2. Results For OpenSora on Rectified Flow](assets/table2.png)

### Audio Generation with Stable Audio Open
![Table 3. Results For Stable Audio Open on DPMSolver++(3M) SDE on 3 datasets](assets/table3.png)


# License
SmoothCache is licensed under the [Apache-2.0](LICENSE) license.

0 comments on commit 5d680b3

Please sign in to comment.