Skip to content
/ DDSL Public
forked from maxjiang93/DDSL

DDSL: Deep Differential Simplex Layer for Neural Networks

Notifications You must be signed in to change notification settings

Ricelll/DDSL

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DDSL: Deep Differential Simplex Layer for Neural Networks

DDSL_teaser

Introduction

In this project, we present a novel neural network layer that performs differentiable rasterization of arbitrary simplex-mesh-based geometrical signals (e.g., point clouds, line mesh, triangular mesh, tetrahedron mesh, polygon and polyhedron) of arbitrary dimensions. We further provide examples of incorporating the DDSL into neural networks for tasks such as polygonal image segmentation and neural shape optimization (for MNIST digits and airfoils).

Our deep learning code base is written using PyTorch 1.0 in Python 3, in conjunction with standard Python packages such as Numpy. PyTorch version > 1.0 is required.

Using the DDSL layer for your applications

We provide an efficient natively PyTorch-based implementation of the DDSL. Detailed documentation for APIs can be found in ddsl/ddsl.py. For examples on using the DDSL implementation for rasterizing a given input mesh, refer to the jupyter notebooks in the folder examples.

Experiments

To replicate the experiments in our paper, please refer to codes in the experiments folder. Detailed instructions for each experiment can be found in the corresponding directories.

Related Projects

This code base contains code for the two projects below. The DDSL layer is a differentiable version for the one outlined in the ealier paper.

Cite

Please cite our work if you find it helpful.

@InProceedings{Jiang_2019_ICCV,
author = {Jiang, Chiyu "Max" and Lansigan, Dana and Marcus, Philip and Niessner, Matthias},
title = {DDSL: Deep Differentiable Simplex Layer for Learning Geometric Signals},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}

@inproceedings{jiang2018convolutional,
title={Convolutional Neural Networks on Non-uniform Geometrical Signals Using Euclidean Spectral Transformation},
author={Chiyu Max Jiang and Dequan Wang and Jingwei Huang and Philip Marcus and Matthias Niessner},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=B1G5ViAqFm},
}

About

DDSL: Deep Differential Simplex Layer for Neural Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.8%
  • Shell 1.4%
  • Jupyter Notebook 0.8%