Skip to content

Source code and datasets of "RapidMatch: A Holistic Approach to Subgraph Query Processing", accepted by VLDB'21 - By Shixuan Sun, Xibo Sun, Yulin Che, Prof. Qiong Luo, and Prof. Bingsheng He

License

Notifications You must be signed in to change notification settings

RapidsAtHKUST/RapidMatch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RapidMatch

Introduction

A subgraph query searches for all embeddings in a data graph that are identical to a query graph. Two kinds of algorithms, either graph exploration based or join based, have been developed for processing subgraph queries. Due to algorithmic and implementational differences, join-based systems can handle query graphs of a few vertices efficiently whereas exploration-based approaches typically process up to several tens of vertices in the query graph. In this paper, we first compare these two kinds of methods and prove that the complexity of result enumeration in state-of-the-art exploration-based methods matches that of the worst-case optimal join. Furthermore, we propose RapidMatch, a holistic subgraph query processing framework integrating the two approaches. Specifically, RapidMatch not only runs relational operators such as selections and joins, but also utilizes graph structural information, as in graph exploration, for filtering and join plan generation. Consequently, it outperforms the state of the art in both approaches on a wide range of query workloads.

For the details, please refer to our VLDB'2021 paper "RapidMatch: A Holistic Approach to Subgraph Query Processing [Preview]" by Shixuan Sun, Xibo Sun, Yulin Che, Prof. Qiong Luo, and Prof. Bingsheng He. If you have any further questions, please feel free to contact us.

Please cite our paper, if you use our source code.

  • "Shixuan Sun, Xibo Sun, Yulin Che, Qiong Luo, and Bingsheng He. RapidMatch: A Holistic Approach to Subgraph Query Processing. VLDB 2021."

Compile

Under the root directory of the project, execute the following commands to compile the source code.

mkdir build
cd build
cmake ..
make

Test

Execute the following commands to test the correctness of the binary file.

cd test
python test.py ../build/matching/RapidMatch.out

Execute

After compiling the source code, you can find the binary file 'RapidMatch.out' under the 'build/matching' directory. Execute the binary with the following command './RapidMatch.out -d data_graphs -q query_graphs -order nd -preprocess true -num number_of_embeddings -time_limit time_in_seconds', in which '-d' specifies the input of the data graphs and '-q' specifies the input of the query graphs. The '-order' parameter gives the ordering method, which is 'nd'. 'nd' denotes the join plan generation method based on the nucleus decomposition. Set '-preprocess' as 'true' to enable the filtering method based on semi-join operations. The '-num' parameter sets the maximum number of embeddings that you would like to find. If the number of embeddings enumerated reaches the limit or all the results have been found, then the program will terminate. Set '-num' as 'MAX' to find all results. The '-time_limit' parameter configures the time budget for the query. If the query cannot be completed within the time limit, then the program will terminate the query and return the number of results found.

Example (Execute the query with the filtering method enabled, and find all results. The time limit is 60 seconds.):

./RapidMatch.out -d ../../dataset/simple_dataset/test_case_1.graph -q ../../dataset/simple_dataset/query1_positive.graph -order nd -preprocess true -num MAX -time_limit 60

Input

Both the input query graph and data graph are vertex-labeled. Each graph starts with 't N M' where N is the number of vertices and M is the number of edges. A vertex and an edge are formatted as 'v VertexID LabelId Degree' and 'e VertexId VertexId' respectively. Note that we require that the vertex id is started from 0 and the range is [0,N - 1] where V is the vertex set. The following is an input sample. You can also find sample data sets and query sets under the test folder.

Example:

t 5 6
v 0 0 2
v 1 1 3
v 2 2 3
v 3 1 2
v 4 2 2
e 0 1
e 0 2
e 1 2
e 1 3
e 2 4
e 3 4

Configuration

You can configure the data layout (Encoded Trie, Hash Table, Trie), set intersection algorithms (Merge, Hybrid, Merge+AVX2, Hybrid+AVX2, QFilter), optimization techniques (Intersection Caching, Failing Set Pruning) and result types (Homomorphism, Isomorphism) by defining macros in 'configuration/config.h'.

Macro Description
HYBRID 0 a hybrid method handling the cardinality skew by integrating the merge-based method with the galloping-based method
HYBRID 1 the merge-based set intersection
SI 0 Accelerate the set intersection with AVX2
SI 1 Accelerate the set intersection with AVX512
SI 2 Scalar set intersection
RELATION_STRUCTURE 0 Encoded Trie
RELATION_STRUCTURE 1 Hash Table
RELATION_STRUCTURE 2 Trie
SPARSE_BITMAP Enable the QFilter set intersection method
FAILING_SET_PRUNING Enable the failing set pruning method
INTERSECTION_CACHE Enable the intersection caching method
HOMOMORPHISM Find the subgraph homomorphisms

In our paper, we execute the large queries with the following configuration, which is the default setting. We set the time limit as 300 seconds (5 minutes) and the number of embeddings as 100000.

Macro Description
HYBRID 0 Hybrid
SI 0 AVX2
RELATION_STRUCTURE 0 Encoded Trie
FAILING_SET_PRUNING Enable the failing set pruning method

We execute the small queries with the following configuration. We set the time limit as 86400 seconds (24 hours) and the number of embeddings as MAX. Note that when finding homomorphisms, you need to disable the failing set pruning technique by commenting out "FAILING_SET_PRUNING" in config.h because this optimization is based on the definition of isomorphism.

Macro Description
HYBRID 0 Hybrid
SI 0 AVX2
RELATION_STRUCTURE 0 Encoded Trie
SPARSE_BITMAP Enable the QFilter set intersection method
INTERSECTION_CACHE Enable the intersection caching method
HOMOMORPHISM Find the subgraph homomorphisms

Experiment Datasets

The real world datasets and the corresponding query sets used in our paper can be downloaded here.

Outside Code

Our project utilizes some outside source code, which is listed in the following.

Description GitHub Link
Hash Join https://github.com/wagjamin/HashJoins
QFilter https://github.com/pkumod/GraphSetIntersection
Sparsepp https://github.com/greg7mdp/sparsepp
Nucleus Decomposition https://github.com/sariyuce/nucleus

About

Source code and datasets of "RapidMatch: A Holistic Approach to Subgraph Query Processing", accepted by VLDB'21 - By Shixuan Sun, Xibo Sun, Yulin Che, Prof. Qiong Luo, and Prof. Bingsheng He

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages