Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enable fwd and varlen_fwd on AMD #63

Merged
merged 4 commits into from
Jun 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 63 additions & 0 deletions .github/workflows/amd_tests.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
name: AMD Perf Kernel Tests

on:
workflow_dispatch:
pull_request:
branches: [main_perf]
merge_group:
branches: [main_perf]
types: [checks_requested]
push:
branches: [main_perf]

concurrency:
group: ${{ github.ref }}
cancel-in-progress: ${{ github.ref != 'refs/heads/main_perf' }}

permissions: read-all


jobs:
Runner-Preparation-AMD:
runs-on: ubuntu-latest
timeout-minutes: 30
outputs:
matrix-HIP: ${{ steps.set-matrix.outputs.matrix-HIP }}
steps:
- name: Prepare runner matrix
id: set-matrix
run: |
if [ x"${{ github.repository }}" == x"ROCm/flash-attention" ]; then
echo '::set-output name=matrix-HIP::[["self-hosted", "rocm"]]'
else
echo '::set-output name=matrix-HIP::[["ubuntu-latest"]]'
fi

Integration-Tests-AMD:
needs: Runner-Preparation-AMD
if: needs.Runner-Preparation-AMD.outputs.matrix-HIP != ''
runs-on: ${{ matrix.runner }}
strategy:
matrix:
runner: ${{fromJson(needs.Runner-Preparation-AMD.outputs.matrix-HIP)}}
container:
image: rocm/pytorch:rocm6.0.2_ubuntu22.04_py3.10_pytorch_2.1.2
options: --device=/dev/kfd --device=/dev/dri --security-opt seccomp=unconfined --group-add video --user root
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Triton
run: |
pip uninstall -y triton
pip install matplotlib pandas pytest
git clone https://github.com/triton-lang/triton
cd triton
pip install --verbose -e python
cd ..
- name: Build
run: |
python setup.py install
- name: Test
run: |
pytest tests/test_flash_attn.py::test_flash_attn_output
pytest tests/test_flash_attn.py::test_flash_attn_varlen_output
9 changes: 8 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -24,4 +24,11 @@ var/
.idea/

# Dev
venv
venv

# Other
.eggs
.vscode
core
scripts
log*
20 changes: 14 additions & 6 deletions flash_attn/flash_attn_interface.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,17 @@
import torch
import torch.nn as nn

def is_hip():
if torch.version.hip is not None:
return True
return False

# isort: off
# We need to import the CUDA kernels after importing torch
import flash_attn_2_cuda as flash_attn_cuda
if is_hip():
from . import flash_attn_triton_interface_amd as flash_attn_gpu
else:
import flash_attn_2_cuda as flash_attn_gpu

# isort: on

Expand Down Expand Up @@ -48,7 +56,7 @@ def _flash_attn_forward(
):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd(
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_gpu.fwd(
q,
k,
v,
Expand Down Expand Up @@ -83,7 +91,7 @@ def _flash_attn_varlen_forward(
):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.varlen_fwd(
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_gpu.varlen_fwd(
q,
k,
v,
Expand Down Expand Up @@ -130,7 +138,7 @@ def _flash_attn_backward(
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
# dq, dk, dv are allocated by us so they should already be contiguous
dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
dq, dk, dv, softmax_d, = flash_attn_cuda.bwd(
dq, dk, dv, softmax_d, = flash_attn_gpu.bwd(
dout,
q,
k,
Expand Down Expand Up @@ -178,7 +186,7 @@ def _flash_attn_varlen_backward(
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
# dq, dk, dv are allocated by us so they should already be contiguous
dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
dq, dk, dv, softmax_d, = flash_attn_cuda.varlen_bwd(
dq, dk, dv, softmax_d, = flash_attn_gpu.varlen_bwd(
dout,
q,
k,
Expand Down Expand Up @@ -1194,7 +1202,7 @@ def flash_attn_with_kvcache(
cache_seqlens = maybe_contiguous(cache_seqlens)
cache_batch_idx = maybe_contiguous(cache_batch_idx)
block_table = maybe_contiguous(block_table)
out, softmax_lse = flash_attn_cuda.fwd_kvcache(
out, softmax_lse = flash_attn_gpu.fwd_kvcache(
q,
k_cache,
v_cache,
Expand Down
Loading
Loading