Skip to content

update /third_party #235

update /third_party

update /third_party #235

# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: Push Binary Release
on:
# # For debugging, enable push/pull_request
# [push, pull_request]
# # run every day at 10:45 AM
# schedule:
# - cron: '45 10 * * *'
# # or manually trigger it
# workflow_dispatch:
jobs:
# build on cpu hosts and upload to GHA
build_on_cpu:
runs-on: ${{ matrix.os }}
strategy:
matrix:
include:
- os: linux.2xlarge
python-version: 3.7
python-tag: "py37"
cuda-tag: "cu11"
- os: linux.2xlarge
python-version: 3.8
python-tag: "py38"
cuda-tag: "cu11"
- os: linux.2xlarge
python-version: 3.9
python-tag: "py39"
cuda-tag: "cu11"
steps:
# Checkout the repository to the GitHub Actions runner
- name: Check ldd --version
run: ldd --version
- name: Checkout
uses: actions/checkout@v2
with:
submodules: true
# Update references
- name: Git Sumbodule Update
run: |
cd fbgemm_gpu/
git submodule sync
git submodule update --init --recursive
- name: Update pip
run: |
sudo yum update -y
sudo yum -y install git python3-pip
sudo pip3 install --upgrade pip
- name: Setup conda
run: |
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh
bash ~/miniconda.sh -b -p $HOME/miniconda -u
- name: Setup PATH with conda
run: |
echo "/home/ec2-user/miniconda/bin" >> $GITHUB_PATH
echo "CONDA=/home/ec2-user/miniconda" >> $GITHUB_PATH
- name: Create conda env
run: |
conda create --name build_binary python=${{ matrix.python-version }}
conda info
- name: check python version
run: |
conda run -n build_binary python --version
- name: Install CUDA 11.3
shell: bash
run: |
sudo yum install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
sudo yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo
sudo yum clean expire-cache
sudo yum install -y nvidia-driver-latest-dkms
sudo yum install -y cuda-11-3
sudo yum install -y cuda-drivers
sudo yum install -y libcudnn8-devel
- name: setup Path
run: |
echo /usr/local/cuda-11.3/bin >> $GITHUB_PATH
echo /usr/local/bin >> $GITHUB_PATH
- name: nvcc check
run: |
nvcc --version
- name: Install PyTorch
shell: bash
run: |
conda run -n build_binary \
python -m pip install --pre torch -f https://download.pytorch.org/whl/test/cu113/torch_test.html
- name: Install Dependencies
shell: bash
run: |
cd fbgemm_gpu/
conda run -n build_binary python -m pip install -r requirements.txt
- name: Test Installation of dependencies
run: |
cd fbgemm_gpu/
conda run -n build_binary python -c "import torch.distributed"
echo "torch.distributed succeeded"
conda run -n build_binary python -c "import skbuild"
echo "skbuild succeeded"
conda run -n build_binary python -c "import numpy"
echo "numpy succeeded"
# for the conda run with quotes, we have to use "\" and double quotes
# here is the issue: https://github.com/conda/conda/issues/10972
- name: Build FBGEMM_GPU Release
run: |
cd fbgemm_gpu/
rm -r dist || true
# buld cuda7.0;8.0 for v100/a100 arch:
# Couldn't build more cuda arch due to 100 MB binary size limit from
# pypi website.
# manylinux1_x86_64 is specified for pypi upload:
# distribute python extensions as wheels on Linux
conda run -n build_binary \
python setup.py bdist_wheel \
--package_name=fbgemm_gpu \
--python-tag=${{ matrix.python-tag }} \
-DTORCH_CUDA_ARCH_LIST="'7.0;8.0'" \
--plat-name=manylinux1_x86_64
ls -lt dist/*.whl
- name: Upload wheel as GHA artifact
uses: actions/upload-artifact@v2
with:
name: fbgemm_gpu_${{ matrix.python-version }}_${{ matrix.cuda-tag }}.whl
path: fbgemm_gpu/dist/fbgemm_gpu-*.whl
# download from GHA, test on gpu and push to pypi
test_on_gpu:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [linux.4xlarge.nvidia.gpu]
python-version: [3.7, 3.8, 3.9]
cuda-tag: ["cu11"]
needs: build_on_cpu
steps:
- name: Check ldd --version
run: ldd --version
- name: check cpu info
shell: bash
run: |
cat /proc/cpuinfo
- name: check distribution info
shell: bash
run: |
cat /proc/version
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
- name: check gpu info
shell: bash
run: |
sudo yum install lshw -y
sudo lshw -C display
# Checkout the repository to the GitHub Actions runner
- name: Checkout
uses: actions/checkout@v2
with:
submodules: true
# Update references
- name: Git Sumbodule Update
run: |
cd fbgemm_gpu/
git submodule sync
git submodule update --init --recursive
git log
- name: Update pip
run: |
sudo yum update -y
sudo yum -y install git python3-pip
sudo pip3 install --upgrade pip
- name: Setup conda
run: |
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh
bash ~/miniconda.sh -b -p $HOME/miniconda -u
- name: setup Path
run: |
echo "/home/ec2-user/miniconda/bin" >> $GITHUB_PATH
echo "CONDA=/home/ec2-user/miniconda" >> $GITHUB_PATH
- name: create conda env
run: |
conda create --name build_binary python=${{ matrix.python-version }}
conda info
- name: check python version no Conda
run: |
python --version
- name: check python version
run: |
conda run -n build_binary python --version
- name: Install CUDA 11.3
shell: bash
run: |
sudo yum install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
sudo yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo
sudo yum clean expire-cache
sudo yum install -y nvidia-driver-latest-dkms
sudo yum install -y cuda-11-3
sudo yum install -y cuda-drivers
sudo yum install -y libcudnn8-devel
- name: setup Path
run: |
echo /usr/local/cuda-11.3/bin >> $GITHUB_PATH
echo /usr/local/bin >> $GITHUB_PATH
- name: nvcc check
run: |
nvcc --version
- name: Install PyTorch
shell: bash
run: |
conda run -n build_binary \
python -m pip install --pre torch -f https://download.pytorch.org/whl/test/cu113/torch_test.html
# download wheel from GHA
- name: Download wheel
uses: actions/download-artifact@v2
with:
name: fbgemm_gpu_${{ matrix.python-version }}_${{ matrix.cuda-tag }}.whl
- name: Display structure of downloaded files
run: ls -R
- name: Install Dependencies
shell: bash
run: |
cd fbgemm_gpu/
conda run -n build_binary python -m pip install -r requirements.txt
- name: Test Installation of dependencies
run: |
cd fbgemm_gpu/
conda run -n build_binary python -c "import torch.distributed"
echo "torch.distributed succeeded"
conda run -n build_binary python -c "import skbuild"
echo "skbuild succeeded"
conda run -n build_binary python -c "import numpy"
echo "numpy succeeded"
- name: Install FBGEMM_GPU Release
run: |
rm -r dist || true
conda run -n build_binary \
python -m pip install *.whl
- name: Test fbgemm_gpu installation
shell: bash
run: |
conda run -n build_binary \
python -c "import fbgemm_gpu"
- name: Test with pytest
# remove this line when we fixed all the unit tests
continue-on-error: true
run: |
conda run -n build_binary \
python -m pip install pytest
# The tests with single CPU core on a less powerful testing GPU in GHA
# can take 5 hours.
timeout 600s conda run -n build_binary \
python -m pytest -v -s -W ignore::pytest.PytestCollectionWarning --continue-on-collection-errors
# Push to Pypi
- name: Push FBGEMM_GPU Binary to PYPI
env:
PYPI_TOKEN: ${{ secrets.PYPI_TOKEN }}
run: |
conda run -n build_binary python -m pip install twine
# Official PYPI website
conda run -n build_binary \
python -m twine upload \
--username __token__ \
--password "$PYPI_TOKEN" \
--skip-existing \
--verbose \
fbgemm_gpu-*.whl