Skip to content
forked from neocaleb/TENET

TENET is a tool for reconstructing gene regulatory networks from pseudo-time ordered single-cell transcriptomic data.

Notifications You must be signed in to change notification settings

QuinceyLv/TENET

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

83 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TENET_single_core_version

A tool for reconstructing Transfer Entropy-based causal gene NETwork from pseudo-time ordered single cell transcriptomic data.
Modified from https://github.com/neocaleb/TENET

Citation

Nucleic Acids Research, gkaa1014, https://doi.org/10.1093/nar/gkaa1014

Dependency

python3
openmpi (>4.0)
JPype
numpy
statsmodels
scanpy

This script could run with python==3.10.4, openmpi==4.1.3, JPype==1.3.0, numpy==1.21.6, statsmodels==0.13.2, and scanpy==1.9.1.

Usage

With h5ad file (PAGA output) as input:

python TENET.py \  
	--h5ad h5ad_file \  
	--out out_dir

With expression_file, trajectory_file and cell_select_file as input:

	python TENET.py \  
	--filelist expression_data.csv trajectory.txt cell_select.txt \
	--out out_dir

Optional parameter:

--hist history_length  Set history length, default=1

Input format

(1) expression_file (raw count is recommended) - a csv file with N cells in the rows and M genes in the columns.
	GENE_1	GENE_2	GENE_3	...	GENE_M

CELL_1	

CELL_2

CELL_3

.
.
.

CELL_N
(2) trajectory_file - a text file of pseudotime data with N time points in the same order as the N cells of the expression file.
0.098
0.040
0.023
.
.
.
0.565
(3) cell_select_file - a text file of cell selection data with N Boolean (1 for select and 0 for non-select) data in the same order as the N cells of the expression file.
1
1
0
.
.
.
1

Output

TE_result_matrix.txt - TEij, M genes x M genes matrix representing the causal relationship from GENEi to GENEj.

TE	GENE_1	GENE_2	GENE_3	...	GENE_M
GENE_1	0	0.05	0.02	...	0.004
GENE_2	0.01	0	0.04	...	0.12
GENE_3	0.003	0.003	0	...	0.001
.
.
.
GENE_M	0.34	0.012	0.032	...	0

Downstream analysis

(1) Reconstructing GRN

Usage
python makeGRN.py [cutoff for FDR]
python makeGRNsameNumberOfLinks.py [number of links]
python makeGRNbyTF.py [species] [cutoff for FDR]
python makeGRNbyTFsameNumberOfLinks.py [species] [number of links]
** Note that "TE_result_matrix.txt" should be in the same folder.
Example
python makeGRN.py 0.01
python makeGRNsameNumberOfLinks.py 1000
python makeGRNbyTF.py human 0.01
python makeGRNbyTFsameNumberOfLinks.py human 1000
Output file
TE_result_matrix.fdr0.01.sif
TE_result_matrix.NumberOfLinks1000.sif
TE_result_matrix.byGRN.fdr0.01.sif
TE_result_matrix.byGRN.NumberOflinks1000.sif
Parameter
[cutoff for fdr] - A cutoff value for FDR by z-test
[number of links] - The number of links of the GRN
[species] - User can choose [human/mouse/rat]

(2) Trimming indirect edges

Usage
python trim_indirect.py [name of GRN] [cutoff]
Example
python trim_indirect.py TE_result_matrix.fdr0.01.sif 0
Output file
TE_result_matrix.fdr0.01.trimIndirect0.0.sif
Parameter
[cutoff] - A cutoff value for trimming indirect edges. Recommended range is -0.1 to 0.1

(3) Counting out-degree of a given GRN

Usage
python countOutdegree.py [name of GRN]
Example
python countOutdegree.py TE_result_matrix.fdr0.01.sif
Output file
TE_result_matrix.fdr0.01.sif.outdegree.txt

About

TENET is a tool for reconstructing gene regulatory networks from pseudo-time ordered single-cell transcriptomic data.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%