Skip to content

Commit

Permalink
implement Bivaraite Bicycle codes using 2BGA as parent
Browse files Browse the repository at this point in the history
  • Loading branch information
Fe-r-oz committed Oct 21, 2024
1 parent 66c0584 commit 2edb444
Show file tree
Hide file tree
Showing 6 changed files with 226 additions and 2 deletions.
11 changes: 11 additions & 0 deletions docs/src/references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -487,3 +487,14 @@ @article{anderson2014fault
year={2014},
publisher={APS}
}

@article{bravyi2024high,
title={High-threshold and low-overhead fault-tolerant quantum memory},
author={Bravyi, Sergey and Cross, Andrew W and Gambetta, Jay M and Maslov, Dmitri and Rall, Patrick and Yoder, Theodore J},
journal={Nature},
volume={627},
number={8005},
pages={778--782},
year={2024},
publisher={Nature Publishing Group UK London}
}
5 changes: 3 additions & 2 deletions ext/QuantumCliffordHeckeExt/QuantumCliffordHeckeExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,13 +5,14 @@ using DocStringExtensions
import QuantumClifford, LinearAlgebra
import Hecke: Group, GroupElem, AdditiveGroup, AdditiveGroupElem,
GroupAlgebra, GroupAlgebraElem, FqFieldElem, representation_matrix, dim, base_ring,
multiplication_table, coefficients, abelian_group, group_algebra
multiplication_table, coefficients, abelian_group, group_algebra,
FinGenAbGroup, FinGenAbGroupElem, one
import Nemo
import Nemo: characteristic, matrix_repr, GF, ZZ, lift

import QuantumClifford.ECC: AbstractECC, CSS, ClassicalCode,
hgp, code_k, code_n, code_s, iscss, parity_checks, parity_checks_x, parity_checks_z, parity_checks_xz,
two_block_group_algebra_codes, generalized_bicycle_codes, bicycle_codes
two_block_group_algebra_codes, generalized_bicycle_codes, bicycle_codes, bivariate_bicycle_codes

include("types.jl")
include("lifted.jl")
Expand Down
35 changes: 35 additions & 0 deletions ext/QuantumCliffordHeckeExt/lifted_product.jl
Original file line number Diff line number Diff line change
Expand Up @@ -196,3 +196,38 @@ function bicycle_codes(a_shifts::Array{Int}, l::Int)
a = sum(GA[n÷l+1] for n in a_shifts)
two_block_group_algebra_codes(a, group_algebra_conj(a))
end

"""
Bivariate Bicycle codes are a class of Abelian 2BGA codes formed by the direct product
of two cyclic groups `ℤₗ × ℤₘ`. The parameters `l` and `m` represent the orders of the
first and second cyclic groups, respectively.
The ECC Zoo has an [entry for this family](https://errorcorrectionzoo.org/c/q-ary_bch).
A [[756, 16, ≤ 34]] code from Table 3 of [bravyi2024high](@cite).
```jldoctest
julia> import Hecke: group_algebra, GF, abelian_group, gens; # hide
julia> l=21; m=18;
julia> GA = group_algebra(GF(2), abelian_group([l, m]));
julia> x, y = gens(GA);
julia> A = [x^3 , y^10 , y^17];
julia> B = [y^5 , x^3 , x^19];
julia> c = bivariate_bicycle_codes(A,B,GA);
julia> code_n(c), code_k(c)
(756, 16)
```
"""
function bivariate_bicycle_codes(A::Vector{GroupAlgebraElem{FqFieldElem, GroupAlgebra{FqFieldElem, FinGenAbGroup, FinGenAbGroupElem}}}, B::Vector{GroupAlgebraElem{FqFieldElem, GroupAlgebra{FqFieldElem, FinGenAbGroup, FinGenAbGroupElem}}}, GA::GroupAlgebra{FqFieldElem, FinGenAbGroup, FinGenAbGroupElem})
a = sum(GA(x) for x in A)
b = sum(GA(x) for x in B)
c = two_block_group_algebra_codes(a,b)
return c
end
1 change: 1 addition & 0 deletions src/ecc/ECC.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ export parity_checks, parity_checks_x, parity_checks_z, iscss,
Shor9, Steane7, Cleve8, Perfect5, Bitflip3,
Toric, Gottesman, Surface, Concat, CircuitCode, QuantumReedMuller,
LPCode, two_block_group_algebra_codes, generalized_bicycle_codes, bicycle_codes,
bivariate_bicycle_codes,
random_brickwork_circuit_code, random_all_to_all_circuit_code,
evaluate_decoder,
CommutationCheckECCSetup, NaiveSyndromeECCSetup, ShorSyndromeECCSetup,
Expand Down
3 changes: 3 additions & 0 deletions src/ecc/codes/lifted_product.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,3 +17,6 @@ function generalized_bicycle_codes end

"""Implemented in a package extension with Hecke."""
function bicycle_codes end

"""Implemented in a package extension with Hecke."""
function bivariate_bicycle_codes end
173 changes: 173 additions & 0 deletions test/test_ecc_bivaraite_bicycle_as_twobga.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
@testitem "ECC Bivaraite Bicycle as 2BGA" begin
using Hecke
using Hecke: group_algebra, GF, abelian_group, gens, one
using QuantumClifford.ECC: bivariate_bicycle_codes, code_k, code_n

@testset "Reproduce Table 3 bravyi2024high" begin
# [[72, 12, 6]]
l=6; m=6
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^3, y, y^2]
B = [y^3, x, x^2]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 72 && code_k(c) == 12

# [[90, 8, 10]]
l=15; m=3
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^9 , y , y^2]
B = [one(x), x^2 , x^7]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 90 && code_k(c) == 8

# [[108, 8, 10]]
l=9; m=6
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^3 , y , y^2]
B = [y^3 , x , x^2]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 108 && code_k(c) == 8

# [[144, 12, 12]]
l=12; m=6
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^3 , y , y^2]
B = [y^3 , x , x^2]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 144 && code_k(c) == 12

# [[288, 12, 12]]
l=12; m=12
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^3 , y^2, y^7]
B = [y^3 , x , x^2]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 288 && code_k(c) == 12

# [[360, 12, ≤ 24]]
l=30; m=6
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^9 , y , y^2]
B = [y^3 , x^25 , x^26]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 360 && code_k(c) == 12

# [[756, 16, ≤ 34]]
l=21; m=18
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^3 , y^10 , y^17]
B = [y^5 , x^3 , x^19]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 756 && code_k(c) == 16
end

@testset "Reproduce Table 1 berthusen2024toward" begin
# [[72, 8, 6]]
l=12; m=3
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^9 , y , y^2]
B = [one(x), x , x^11]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 72 && code_k(c) == 8

# [[90, 8, 6]]
l=9; m=5
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^8 , y^4 , y]
B = [y^5 , x^8 , x^7]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 90 && code_k(c) == 8

# [[120, 8, 8]]
l=12; m=5
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^10 , y^4, y]
B = [one(x), x , x^2]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 120 && code_k(c) == 8

# [[150, 8, 8]]
l=15; m=5
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^5 , y^2 , y^3]
B = [y^2 , x^7 , x^6]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 150 && code_k(c) == 8

# [[196, 12, 8]]
l=14; m=7
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^6 , y^5 , y^6]
B = [one(x), x^4 , x^13]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 196 && code_k(c) == 12
end

@testset "Reproduce Table 1 wang2024coprime" begin
# [[54, 8, 6]]
l=3; m=9
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [one(x), y^2, y^4]
B = [y^3 , x , x^2]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 54 && code_k(c) == 8

# [[98, 6, 12]]
l=7; m=7
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^3 , y^5 , y^6]
B = [y^2 , x^3 , x^5]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 98 && code_k(c) == 6

# [[126, 8, 10]]
l=3; m=21
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [one(x), y^2, y^10]
B = [y^3 , x , x^2]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 126 && code_k(c) == 8

# [[150, 16, 8]]
l=5; m=15
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [one(x), y^6, y^8]
B = [y^5 , x , x^4]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 150 && code_k(c) == 16

# [[162, 8, 14]]
l=3; m=27
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [one(x), y^10, y^14]
B = [y^12 , x , x^2]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 162 && code_k(c) == 8

# [[180, 8, 16]]
l=6; m=15
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = [x^3 , y , y^2]
B = [y^6 , x^4 , x^5]
c = bivariate_bicycle_codes(A,B,GA)
@test code_n(c) == 180 && code_k(c) == 8
end
end

0 comments on commit 2edb444

Please sign in to comment.