-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #63 from Gertian/master
Define arithmetic operators for LocalOperators
- Loading branch information
Showing
1 changed file
with
74 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,20 +1,62 @@ | ||
|
||
# Hamiltonian consisting of local terms | ||
# ------------------------------------- | ||
""" | ||
struct LocalOperator{T<:Tuple,S} | ||
A sum of local operators acting on a lattice. The lattice is stored as a matrix of vector spaces, | ||
and the terms are stored as a tuple of pairs of indices and operators. | ||
# Fields | ||
- `lattice::Matrix{S}`: The lattice on which the operator acts. | ||
- `terms::T`: The terms of the operator, stored as a tuple of pairs of indices and operators. | ||
# Constructors | ||
LocalOperator(lattice::Matrix{S}, terms::Pair...) | ||
LocalOperator{T,S}(lattice::Matrix{S}, terms::T) where {T,S} # expert mode | ||
# Examples | ||
```julia | ||
lattice = fill(ℂ^2, 1, 1) # single-site unitcell | ||
O1 = LocalOperator(lattice, ((1, 1),) => σx, ((1, 1), (1, 2)) => σx ⊗ σx, ((1, 1), (2, 1)) => σx ⊗ σx) | ||
``` | ||
""" | ||
struct LocalOperator{T<:Tuple,S} | ||
lattice::Matrix{S} | ||
terms::T | ||
end | ||
function LocalOperator(lattice::Matrix{S}, terms::Pair...) where {S} | ||
lattice′ = PeriodicArray(lattice) | ||
for (inds, operator) in terms | ||
@assert operator isa AbstractTensorMap | ||
@assert numout(operator) == numin(operator) == length(inds) | ||
for i in 1:length(inds) | ||
@assert space(operator, i) == lattice′[inds[i]] | ||
function LocalOperator{T,S}(lattice::Matrix{S}, terms::T) where {T,S} | ||
plattice = PeriodicArray(lattice) | ||
# Check if the indices of the operator are valid with themselves and the lattice | ||
for (inds, operator) in terms | ||
@assert operator isa AbstractTensorMap | ||
@assert numout(operator) == numin(operator) == length(inds) | ||
@assert spacetype(operator) == S | ||
|
||
for i in 1:length(inds) | ||
@assert space(operator, i) == plattice[inds[i]] | ||
end | ||
end | ||
return new{T,S}(lattice, terms) | ||
end | ||
return LocalOperator{typeof(terms),S}(lattice, terms) | ||
end | ||
function LocalOperator( | ||
lattice::Matrix, | ||
terms::Pair...; | ||
This comment has been minimized.
Sorry, something went wrong.
This comment has been minimized.
Sorry, something went wrong.
lkdvos
Member
|
||
atol=maximum(x -> eps(real(scalartype(x[2])))^(3 / 4), terms), | ||
) | ||
allinds = getindex.(terms, 1) | ||
alloperators = getindex.(terms, 2) | ||
|
||
relevant_terms = [] | ||
for inds in unique(allinds) | ||
operator = sum(alloperators[findall(==(inds), allinds)]) | ||
norm(operator) > atol && push!(relevant_terms, inds => operator) | ||
end | ||
|
||
terms_tuple = Tuple(relevant_terms) | ||
return LocalOperator{typeof(terms_tuple),eltype(lattice)}(lattice, terms_tuple) | ||
end | ||
|
||
""" | ||
|
@@ -27,6 +69,9 @@ while the second version throws an error if the lattices do not match. | |
function checklattice(args...) | ||
return checklattice(Bool, args...) || throw(ArgumentError("Lattice mismatch.")) | ||
end | ||
function checklattice(::Type{Bool}, H1::LocalOperator, H2::LocalOperator) | ||
return H1.lattice == H2.lattice | ||
end | ||
function checklattice(::Type{Bool}, peps::InfinitePEPS, O::LocalOperator) | ||
return size(peps) == size(O.lattice) | ||
end | ||
|
@@ -57,3 +102,22 @@ function Base.repeat(O::LocalOperator, m::Int, n::Int) | |
end | ||
return LocalOperator(lattice, terms...) | ||
end | ||
|
||
# Linear Algebra | ||
# -------------- | ||
function Base.:*(α::Number, O::LocalOperator) | ||
scaled_terms = map(((inds, operator),) -> (inds => α * operator), O.terms) | ||
return LocalOperator{typeof(scaled_terms),eltype(O.lattice)}(O.lattice, scaled_terms) | ||
end | ||
Base.:*(O::LocalOperator, α::Number) = α * O | ||
|
||
Base.:/(O::LocalOperator, α::Number) = O * inv(α) | ||
Base.:\(α::Number, O::LocalOperator) = inv(α) * O | ||
|
||
function Base.:+(O1::LocalOperator, O2::LocalOperator) | ||
checklattice(O1, O2) | ||
return LocalOperator(O1.lattice, O1.terms..., O2.terms...) | ||
end | ||
|
||
Base.:-(O::LocalOperator) = -1 * O | ||
Base.:-(O1::LocalOperator, O2::LocalOperator) = O1 + (-O2) |
@lkdvos This seems to have broken (or at least changed) some things.
Before I could do :
but now I need