-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
bf3fa28
commit 00d4690
Showing
4 changed files
with
407 additions
and
29 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -7,3 +7,4 @@ | |
* examples | ||
* examples | ||
* [SEIR](examples/SEIR.md) | ||
* [SIR](examples/SIR.md) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
<!-- Copyright 2023 Unai Lería Fortea | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. --> | ||
|
||
For a more in-depth example check the Jupiter notebook with the same name, or check out https://github.com/QuanticPony/compartmental/blob/master/examples/sir.ipynb | ||
|
||
|
||
$$ | ||
\begin{align} | ||
\nonumber \dot{S} &= -\beta \langle k \rangle \frac{I}{N}S. \\ | ||
\nonumber \dot{I} &= \beta \langle k \rangle \frac{I}{N}S - \mu I. \\ | ||
\nonumber \dot{R} &= \mu I. | ||
\end{align} | ||
$$ | ||
|
||
```json | ||
sir_model = { | ||
"simulation": { | ||
"n_simulations": 100000, | ||
"n_executions": 1, | ||
"n_steps": 130 | ||
}, | ||
"compartiments": { | ||
"S": { | ||
"initial_value": 1, | ||
"minus_compartiments": "I" | ||
}, | ||
"I": { | ||
"initial_value": "Io", | ||
}, | ||
"R": { "initial_value": 0 }, | ||
}, | ||
"params": { | ||
"betta": { | ||
"min": 0.1, | ||
"max": 0.4 | ||
}, | ||
"mu": { | ||
"min": 0.01, | ||
"max": 0.2 | ||
}, | ||
"Io": { | ||
"min": 1e-6, | ||
"max": 1e-4 | ||
} | ||
}, | ||
"fixed_params": { | ||
"K_mean": 1 | ||
}, | ||
"reference": { | ||
"compartiments" : ["R"] | ||
}, | ||
"results": { | ||
"save_percentage": 0.1 | ||
} | ||
} | ||
``` | ||
|
||
|
||
Now we need to define the evolution function of the system and assign it to the model: | ||
```py | ||
import compartmental as gcm | ||
gcm.use_numpy() | ||
|
||
|
||
SirModel = gcm.GenericModel(sir_model) | ||
|
||
def evolve(m, *args, **kargs): | ||
p_infected = m.betta * m.K_mean * m.I | ||
|
||
m.R += m.mu * m.I | ||
m.I += m.S * p_infected - m.I * m.mu | ||
m.S -= m.S * p_infected | ||
|
||
SirModel.evolve = evolve | ||
``` | ||
|
||
|
||
Once the model is defined and the evolution function is set we can create a trajectory of the model. We can set specific values for the random parameters as follows: | ||
|
||
```py | ||
sample, sample_params = gcm.util.get_model_sample_trajectory(SirModel, **{"betta":0.2, "mu":0.08, "Io": 1e-5}) | ||
``` | ||
|
||
Now we apply the automatic adjustment of the model. Keep in mind it will only work if the initial ranges of the `params` are set close to the optimal values. | ||
```py | ||
for i in range(7): | ||
SirModel.run(sample[SirModel.compartiment_name_to_index["R"]], f"sir_temp{i}.data") | ||
|
||
results = gcm.util.load_parameters(f"sir_temp{i}.data") | ||
|
||
gcm.util.auto_adjust_model_params(SirModel, results) | ||
``` | ||
|
||
Finally we run the model once again to get the final photo: | ||
```py | ||
SirModel.run(sample[SirModel.compartiment_name_to_index["R"]], "sir.data") | ||
results = gcm.util.load_parameters("sir.data") | ||
``` | ||
|
||
<table> | ||
<tr> | ||
<td> | ||
<h3 align='center'> Not adjusted | ||
</td> | ||
<td> <img src="../../images/sir_1.png" alt="1" width = 500px height = 640px> </td> | ||
<td> <img src="../../images/sir_2.png" alt="2" width = 500px height = 640px> </td> | ||
</tr> | ||
<tr> | ||
<td> | ||
<h3 align='center'> With automatic adjustment | ||
</td> | ||
<td><img src="../../images/sir_3.png" alt="3" width = 500px height = 640px></td> | ||
<td><img src="../../images/sir_4.png" alt="4" width = 500px height = 640px> | ||
</td> | ||
</tr> | ||
</table> | ||
|
||
|
||
|
||
|
||
Code used for the plots: | ||
|
||
```py | ||
weights = numpy.exp(-results[0]/numpy.min(results[0])) | ||
|
||
percentiles = gcm.util.get_percentiles_from_results(SirModel, results, 30, 70) | ||
try: | ||
# In case cupy is used | ||
percentiles = percentiles.get() | ||
sample = sample.get() | ||
weights = weights.get() | ||
results = results.get() | ||
sample_params = sample_params.get() | ||
except AttributeError: | ||
pass | ||
|
||
plt.figure() | ||
plt.fill_between(numpy.arange(percentiles.shape[2]), percentiles[0,0], percentiles[0,2], alpha=0.3) | ||
plt.plot(sample[SirModel.compartiment_name_to_index["S"]], 'green') | ||
plt.plot(sample[SirModel.compartiment_name_to_index["I"]], 'orange') | ||
plt.plot(sample[SirModel.compartiment_name_to_index["R"]], 'brown') | ||
plt.plot(numpy.arange(percentiles.shape[2]), percentiles[0,1], '--', color='purple') | ||
|
||
|
||
fig, *axes = plt.subplots(1, len(results)-1) | ||
for i, ax in enumerate(axes[0], 1): | ||
ax.hist(results[i], weights=weights) | ||
ax.vlines(sample_params[i-1], *ax.get_ylim(), 'red') | ||
|
||
plt.show() | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
<!-- Copyright 2023 Unai Lería Fortea | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. --> | ||
|
||
For a more in-depth example check the Jupiter notebook with the same name, or check out https://github.com/QuanticPony/compartmental/blob/master/examples/sir.ipynb | ||
|
||
|
||
$$ | ||
\begin{align} | ||
\nonumber \dot{S} &= -\beta \langle k \rangle \frac{I}{N}S. \\ | ||
\nonumber \dot{I} &= \beta \langle k \rangle \frac{I}{N}S - \mu I. \\ | ||
\nonumber \dot{R} &= \mu I. | ||
\end{align} | ||
$$ | ||
|
||
```json | ||
sir_model = { | ||
"simulation": { | ||
"n_simulations": 100000, | ||
"n_executions": 1, | ||
"n_steps": 130 | ||
}, | ||
"compartiments": { | ||
"S": { | ||
"initial_value": 1, | ||
"minus_compartiments": "I" | ||
}, | ||
"I": { | ||
"initial_value": "Io", | ||
}, | ||
"R": { "initial_value": 0 }, | ||
}, | ||
"params": { | ||
"betta": { | ||
"min": 0.1, | ||
"max": 0.4 | ||
}, | ||
"mu": { | ||
"min": 0.01, | ||
"max": 0.2 | ||
}, | ||
"Io": { | ||
"min": 1e-6, | ||
"max": 1e-4 | ||
} | ||
}, | ||
"fixed_params": { | ||
"K_mean": 1 | ||
}, | ||
"reference": { | ||
"compartiments" : ["R"] | ||
}, | ||
"results": { | ||
"save_percentage": 0.1 | ||
} | ||
} | ||
``` | ||
|
||
|
||
Now we need to define the evolution function of the system and assign it to the model: | ||
```py | ||
import compartmental as gcm | ||
gcm.use_numpy() | ||
|
||
|
||
SirModel = gcm.GenericModel(sir_model) | ||
|
||
def evolve(m, *args, **kargs): | ||
p_infected = m.betta * m.K_mean * m.I | ||
|
||
m.R += m.mu * m.I | ||
m.I += m.S * p_infected - m.I * m.mu | ||
m.S -= m.S * p_infected | ||
|
||
SirModel.evolve = evolve | ||
``` | ||
|
||
|
||
Once the model is defined and the evolution function is set we can create a trajectory of the model. We can set specific values for the random parameters as follows: | ||
|
||
```py | ||
sample, sample_params = gcm.util.get_model_sample_trajectory(SirModel, **{"betta":0.2, "mu":0.08, "Io": 1e-5}) | ||
``` | ||
|
||
Now we apply the automatic adjustment of the model. Keep in mind it will only work if the initial ranges of the `params` are set close to the optimal values. | ||
```py | ||
for i in range(7): | ||
SirModel.run(sample[SirModel.compartiment_name_to_index["R"]], f"sir_temp{i}.data") | ||
|
||
results = gcm.util.load_parameters(f"sir_temp{i}.data") | ||
|
||
gcm.util.auto_adjust_model_params(SirModel, results) | ||
``` | ||
|
||
Finally we run the model once again to get the final photo: | ||
```py | ||
SirModel.run(sample[SirModel.compartiment_name_to_index["R"]], "sir.data") | ||
results = gcm.util.load_parameters("sir.data") | ||
``` | ||
|
||
<table> | ||
<tr> | ||
<td> | ||
<h3 align='center'> Not adjusted | ||
</td> | ||
<td> <img src="../../images/sir_1.png" alt="1" width = 500px height = 640px> </td> | ||
<td> <img src="../../images/sir_2.png" alt="2" width = 500px height = 640px> </td> | ||
</tr> | ||
<tr> | ||
<td> | ||
<h3 align='center'> With automatic adjustment | ||
</td> | ||
<td><img src="../../images/sir_3.png" alt="3" width = 500px height = 640px></td> | ||
<td><img src="../../images/sir_4.png" alt="4" width = 500px height = 640px> | ||
</td> | ||
</tr> | ||
</table> | ||
|
||
|
||
|
||
|
||
Code used for the plots: | ||
|
||
```py | ||
weights = numpy.exp(-results[0]/numpy.min(results[0])) | ||
|
||
percentiles = gcm.util.get_percentiles_from_results(SirModel, results, 30, 70) | ||
try: | ||
# In case cupy is used | ||
percentiles = percentiles.get() | ||
sample = sample.get() | ||
weights = weights.get() | ||
results = results.get() | ||
sample_params = sample_params.get() | ||
except AttributeError: | ||
pass | ||
|
||
plt.figure() | ||
plt.fill_between(numpy.arange(percentiles.shape[2]), percentiles[0,0], percentiles[0,2], alpha=0.3) | ||
plt.plot(sample[SirModel.compartiment_name_to_index["S"]], 'green') | ||
plt.plot(sample[SirModel.compartiment_name_to_index["I"]], 'orange') | ||
plt.plot(sample[SirModel.compartiment_name_to_index["R"]], 'brown') | ||
plt.plot(numpy.arange(percentiles.shape[2]), percentiles[0,1], '--', color='purple') | ||
|
||
|
||
fig, *axes = plt.subplots(1, len(results)-1) | ||
for i, ax in enumerate(axes[0], 1): | ||
ax.hist(results[i], weights=weights) | ||
ax.vlines(sample_params[i-1], *ax.get_ylim(), 'red') | ||
|
||
plt.show() | ||
``` |
Oops, something went wrong.