Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Replace from torch.nn.functional import ... with import torch.nn.functional as F #89

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions escnn/nn/modules/conv/r2_transposed_convolution.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

from torch.nn.functional import conv_transpose2d
import torch.nn.functional as F

import escnn.nn
from escnn.nn import FieldType
Expand Down Expand Up @@ -127,7 +127,7 @@ def forward(self, input: GeometricTensor):
_filter, _bias = self.expand_parameters()

# use it for convolution and return the result
output = conv_transpose2d(
output = F.conv_transpose2d(
input.tensor, _filter,
padding=self.padding,
output_padding=self.output_padding,
Expand Down
6 changes: 3 additions & 3 deletions escnn/nn/modules/conv/r2convolution.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from torch.nn.functional import conv2d, pad
import torch.nn.functional as F

from escnn.nn import FieldType
from escnn.nn import GeometricTensor
Expand Down Expand Up @@ -214,14 +214,14 @@ def forward(self, input: GeometricTensor):
# use it for convolution and return the result

if self.padding_mode == 'zeros':
output = conv2d(input.tensor, _filter,
output = F.conv2d(input.tensor, _filter,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
bias=_bias)
else:
output = conv2d(pad(input.tensor, self._reversed_padding_repeated_twice, self.padding_mode),
output = F.conv2d(F.pad(input.tensor, self._reversed_padding_repeated_twice, self.padding_mode),
_filter,
stride=self.stride,
dilation=self.dilation,
Expand Down
4 changes: 2 additions & 2 deletions escnn/nn/modules/conv/r3_transposed_convolution.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import gc

from torch.nn.functional import conv_transpose3d
import torch.nn.functional as F

import escnn.nn
from escnn.nn import FieldType
Expand Down Expand Up @@ -128,7 +128,7 @@ def forward(self, input: GeometricTensor):


# use it for convolution and return the result
output = conv_transpose3d(
output = F.conv_transpose3d(
input.tensor, _filter,
padding=self.padding,
output_padding=self.output_padding,
Expand Down
6 changes: 3 additions & 3 deletions escnn/nn/modules/conv/r3convolution.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from torch.nn.functional import conv3d, pad
import torch.nn.functional as F

import escnn.nn
from escnn.nn import FieldType
Expand Down Expand Up @@ -207,14 +207,14 @@ def forward(self, input: GeometricTensor):

# use it for convolution and return the result
if self.padding_mode == 'zeros':
output = conv3d(input.tensor, _filter,
output = F.conv3d(input.tensor, _filter,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
bias=_bias)
else:
output = conv3d(pad(input.tensor, self._reversed_padding_repeated_twice, self.padding_mode),
output = F.conv3d(F.pad(input.tensor, self._reversed_padding_repeated_twice, self.padding_mode),
_filter,
stride=self.stride,
dilation=self.dilation,
Expand Down
4 changes: 2 additions & 2 deletions escnn/nn/modules/linear.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from escnn.nn.modules.basismanager import BlocksBasisExpansion

from torch.nn import Parameter
from torch.nn.functional import linear
import torch.nn.functional as F
import torch
import numpy as np

Expand Down Expand Up @@ -202,7 +202,7 @@ def forward(self, input: GeometricTensor):
# retrieve the matrix and the bias
_matrix, _bias = self.expand_parameters()

output = linear(input.tensor, _matrix, bias=_bias)
output = F.linear(input.tensor, _matrix, bias=_bias)

return GeometricTensor(output, self.out_type, input.coords)

Expand Down
1 change: 0 additions & 1 deletion escnn/nn/modules/nonlinearities/tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@
from escnn.nn.modules.basismanager import BlocksBasisExpansion

from torch.nn import Parameter
from torch.nn.functional import linear

from typing import List, Tuple, Any

Expand Down
8 changes: 4 additions & 4 deletions escnn/nn/modules/rdupsampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@

import math

from torch.nn.functional import interpolate
import torch.nn.functional as F

__all__ = ["R2Upsampling", "R3Upsampling"]

Expand Down Expand Up @@ -105,12 +105,12 @@ def forward(self, input: GeometricTensor):
assert len(input.shape) == 2 + self.d, (input.shape, self.d)

if self._align_corners is None:
output = interpolate(input.tensor,
output = F.interpolate(input.tensor,
size=self._size,
scale_factor=self._scale_factor,
mode=self._mode)
else:
output = interpolate(input.tensor,
output = F.interpolate(input.tensor,
size=self._size,
scale_factor=self._scale_factor,
mode=self._mode,
Expand Down Expand Up @@ -413,4 +413,4 @@ def check_equivariance(self, atol: float = 0.1, rtol: float = 0.1):

errors.append((el, errs.mean()))

return errors
return errors