Skip to content

Commit

Permalink
Extend the documentation of the nalgebra integration to discuss its l…
Browse files Browse the repository at this point in the history
…ikely surprising memory layout requirements.
  • Loading branch information
adamreichold committed Mar 25, 2024
1 parent 6d38eaf commit 5daf0e3
Show file tree
Hide file tree
Showing 4 changed files with 64 additions and 1 deletion.
4 changes: 4 additions & 0 deletions src/array.rs
Original file line number Diff line number Diff line change
Expand Up @@ -879,6 +879,8 @@ where
{
/// Try to convert this array into a [`nalgebra::MatrixView`] using the given shape and strides.
///
/// See [`PyReadonlyArray::try_as_matrix`] for a discussion of the memory layout requirements.
///
/// # Safety
///
/// Calling this method invalidates all exclusive references to the internal data, e.g. `ArrayViewMut` or `MatrixSliceMut`.
Expand All @@ -901,6 +903,8 @@ where

/// Try to convert this array into a [`nalgebra::MatrixViewMut`] using the given shape and strides.
///
/// See [`PyReadonlyArray::try_as_matrix`] for a discussion of the memory layout requirements.
///
/// # Safety
///
/// Calling this method invalidates all other references to the internal data, e.g. `ArrayView`, `MatrixSlice`, `ArrayViewMut` or `MatrixSliceMut`.
Expand Down
39 changes: 39 additions & 0 deletions src/borrow/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -279,6 +279,43 @@ where
D: Dimension,
{
/// Try to convert this array into a [`nalgebra::MatrixView`] using the given shape and strides.
///
/// Note that nalgebra's types default to Fortan/column-major standard strides whereas NumPy creates C/row-major strides by default.
/// Furthermore, array views created by slicing into existing arrays will often have non-standard strides.
///
/// If you do not fully control the memory layout of a given array, e.g. at your API entry points,
/// it can be useful to opt into nalgebra's support for [dynamic strides][nalgebra::Dyn], for example
///
/// ```rust
/// # use pyo3::prelude::*;
/// use pyo3::py_run;
/// use numpy::{get_array_module, PyReadonlyArray2};
/// use nalgebra::{MatrixView, Const, Dyn};
///
/// #[pyfunction]
/// fn sum_standard_layout<'py>(py: Python<'py>, array: PyReadonlyArray2<'py, f64>) -> Option<f64> {
/// let matrix: Option<MatrixView<f64, Const<2>, Const<2>>> = array.try_as_matrix();
/// matrix.map(|matrix| matrix.sum())
/// }
///
/// #[pyfunction]
/// fn sum_dynamic_strides<'py>(py: Python<'py>, array: PyReadonlyArray2<'py, f64>) -> Option<f64> {
/// let matrix: Option<MatrixView<f64, Const<2>, Const<2>, Dyn, Dyn>> = array.try_as_matrix();
/// matrix.map(|matrix| matrix.sum())
/// }
///
/// Python::with_gil(|py| {
/// let np = py.eval("__import__('numpy')", None, None).unwrap();
/// let sum_standard_layout = wrap_pyfunction!(sum_standard_layout)(py).unwrap();
/// let sum_dynamic_strides = wrap_pyfunction!(sum_dynamic_strides)(py).unwrap();
///
/// py_run!(py, np sum_standard_layout, r"assert sum_standard_layout(np.ones((2, 2), order='F')) == 4.");
/// py_run!(py, np sum_standard_layout, r"assert sum_standard_layout(np.ones((2, 2, 2))[:,:,0]) is None");
///
/// py_run!(py, np sum_dynamic_strides, r"assert sum_dynamic_strides(np.ones((2, 2), order='F')) == 4.");
/// py_run!(py, np sum_dynamic_strides, r"assert sum_dynamic_strides(np.ones((2, 2, 2))[:,:,0]) == 4.");
/// });
/// ```
#[doc(alias = "nalgebra")]
pub fn try_as_matrix<R, C, RStride, CStride>(
&self,
Expand Down Expand Up @@ -466,6 +503,8 @@ where
D: Dimension,
{
/// Try to convert this array into a [`nalgebra::MatrixViewMut`] using the given shape and strides.
///
/// See [`PyReadonlyArray::try_as_matrix`] for a discussion of the memory layout requirements.
#[doc(alias = "nalgebra")]
pub fn try_as_matrix_mut<R, C, RStride, CStride>(
&self,
Expand Down
2 changes: 1 addition & 1 deletion src/untyped_array.rs
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ use crate::cold;
use crate::dtype::PyArrayDescr;
use crate::npyffi;

/// A safe, untyped wrapper for NumPy's [`ndarray`][ndarray] class.
/// A safe, untyped wrapper for NumPy's [`ndarray`] class.
///
/// Unlike [`PyArray<T,D>`][crate::PyArray], this type does not constrain either element type `T` nor the dimensionality `D`.
/// This can be useful to inspect function arguments, but it prevents operating on the elements without further downcasts.
Expand Down
20 changes: 20 additions & 0 deletions tests/borrow.rs
Original file line number Diff line number Diff line change
Expand Up @@ -434,6 +434,26 @@ fn matrix_from_numpy() {
assert!(matrix.is_none());
});

Python::with_gil(|py| {
let array = numpy::pyarray![py, [[0, 1], [2, 3]], [[4, 5], [6, 7]]];
let array: &PyArray2<i32> = py
.eval("a[:,:,0]", Some([("a", array)].into_py_dict(py)), None)
.unwrap()
.downcast()
.unwrap();
let array = array.readonly();

let matrix: nalgebra::MatrixView<
'_,
i32,
nalgebra::Const<2>,
nalgebra::Const<2>,
nalgebra::Dyn,
nalgebra::Dyn,
> = array.try_as_matrix().unwrap();
assert_eq!(matrix, nalgebra::Matrix2::new(0, 2, 4, 6));
});

Python::with_gil(|py| {
let array = numpy::pyarray![py, [0, 1, 2], [3, 4, 5], [6, 7, 8]];
let array = array.readonly();
Expand Down

0 comments on commit 5daf0e3

Please sign in to comment.