Skip to content

Commit

Permalink
Use marshal for save/load operators to improve performance
Browse files Browse the repository at this point in the history
  • Loading branch information
Spaceenter committed Jul 22, 2017
1 parent d7e57f2 commit a4bc785
Showing 1 changed file with 35 additions and 25 deletions.
60 changes: 35 additions & 25 deletions src/fermilib/utils/_operator_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,7 @@
"""This module provides generic tools for classes in ops/"""
from __future__ import absolute_import

import h5py
import json
import marshal
import numpy
import os
import time
Expand Down Expand Up @@ -123,11 +122,11 @@ def commutator(operator_a, operator_b):


def save_operator(operator, file_name=None, data_directory=None):
"""Save FermionOperator or QubitOperator to hdf5 file.
"""Save FermionOperator or QubitOperator to file.
Args:
operator: An instance of FermionOperator or QubitOperator.
file_name: The name of the saved hdf5 file.
file_name: The name of the saved file.
data_directory: Optional data directory to change from default data
directory specified in config file.
Expand All @@ -151,19 +150,17 @@ def save_operator(operator, file_name=None, data_directory=None):
else:
raise TypeError('Operator of invalid type.')

with h5py.File(file_path, 'w') as f:
f['operator_type'] = numpy.string_(operator_type)
f['operator_terms'] = numpy.string_(json.dumps(
[{'k': k, 'r': v.real, 'i': v.imag}
for k, v in operator.terms.items()],
ensure_ascii=False).encode('utf8'))
tm = operator.terms
f = open(file_path, 'wb')
marshal.dump((operator_type, {k: numpy_scalar(tm[k]) for k in tm}), f)
f.close()


def load_operator(file_name=None, data_directory=None):
"""Load FermionOperator or QubitOperator from hdf5 file.
"""Load FermionOperator or QubitOperator from file.
Args:
file_name: The name of the saved hdf5 file.
file_name: The name of the saved file.
data_directory: Optional data directory to change from default data
directory specified in config file.
Expand All @@ -175,33 +172,30 @@ def load_operator(file_name=None, data_directory=None):
"""
file_path = get_file_path(file_name, data_directory)

with h5py.File(file_path, 'r') as f:
operator_type = f['operator_type'][...].tobytes().decode('utf-8')
operator_terms = json.loads(
f['operator_terms'][...].tobytes().decode('utf-8'))
with open(file_path, 'rb') as f:
data = marshal.load(f)
operator_type = data[0]
operator_terms = data[1]

if operator_type == 'FermionOperator':
operator = FermionOperator()
for term in operator_terms:
operator += FermionOperator(
tuple(tuple(x) for x in term['k']), term['r'] + term['i'] * 1j)
operator += FermionOperator(term, operator_terms[term])
elif operator_type == 'QubitOperator':
operator = QubitOperator()
for term in operator_terms:
operator += QubitOperator(
tuple((x[0], str(x[1])) for x in term['k']),
term['r'] + term['i'] * 1j)
operator += QubitOperator(term, operator_terms[term])
else:
raise TypeError('Operator of invalid type.')

return operator


def get_file_path(file_name, data_directory):
"""Compute file_path for the hdf5 file that stores operator.
"""Compute file_path for the file that stores operator.
Args:
file_name: The name of the saved hdf5 file.
file_name: The name of the saved file.
data_directory: Optional data directory to change from default data
directory specified in config file.
Expand All @@ -212,8 +206,8 @@ def get_file_path(file_name, data_directory):
OperatorUtilsError: File name is not provided.
"""
if file_name:
if file_name[-5:] != '.hdf5':
file_name = file_name + ".hdf5"
if file_name[-5:] != '.data':
file_name = file_name + ".data"
else:
raise OperatorUtilsError("File name is not provided.")

Expand All @@ -223,3 +217,19 @@ def get_file_path(file_name, data_directory):
file_path = data_directory + '/' + file_name

return file_path


def numpy_scalar(number):
"""Convert numpy float64 and complex128 to native Python type.
Args:
number: The number in numpy float64 or complex128 format.
Returns:
number: Converted number in native Python format.
"""
if (isinstance(number, numpy.float64) or
isinstance(number, numpy.complex128)):
return numpy.asscalar(number)
else:
return number

0 comments on commit a4bc785

Please sign in to comment.