-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add ACS, rent and property taxes and 3-year CPS (#35)
* Migrate ACS from policyengine-us Fixes #31 * populate acs * Update PolicyEngine US data * format * data fix * test * changelog * Update PolicyEngine US data * remove extra * chagelog * Update PolicyEngine US data * readme file * property tax * changelog * Update PolicyEngine US data * format * changelog * Pool 3 CPS years Fixes #66 * Upload ECPS result in PRs * Feed into ECPS * Bump version and ECPS file * changelog * Move back to old ECPS * init * storage * Fix imports * Move versioning back * Add URL for ACS 2022 * Add QRF rewrite and full imputations * Add calibration * Shift to branch of US * Make optional install * Generate ACS before CPS * What a silly error * Minor improvements * Fix bugs * Adjust QRF to enable single-output predictions * Fix bug in QRF --------- Co-authored-by: Github Actions[bot] <[email protected]> Co-authored-by: Nikhil Woodruff <[email protected]>
- Loading branch information
1 parent
659fac0
commit 4e1d1e0
Showing
20 changed files
with
634 additions
and
66 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
- bump: minor | ||
changes: | ||
added: | ||
- Migrate the ACS from the US-repository. | ||
changed: | ||
- Enhanced CPS now uses a 3-year pooled CPS. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
2022 ACS 1 Year Data Dictionary: | ||
https://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2022.pdf | ||
User Guide: | ||
https://www2.census.gov/programs-surveys/acs/tech_docs/pums/2022ACS_PUMS_User_Guide.pdf | ||
PUMS Documentation: | ||
https://www.census.gov/programs-surveys/acs/microdata/documentation.html |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
from .acs import * | ||
from .census_acs import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
import logging | ||
from policyengine_core.data import Dataset | ||
import h5py | ||
from policyengine_us_data.datasets.acs.census_acs import CensusACS_2022 | ||
from policyengine_us_data.storage import STORAGE_FOLDER | ||
from pandas import DataFrame | ||
import numpy as np | ||
import pandas as pd | ||
|
||
|
||
class ACS(Dataset): | ||
data_format = Dataset.ARRAYS | ||
time_period = None | ||
census_acs = None | ||
|
||
def generate(self) -> None: | ||
"""Generates the ACS dataset.""" | ||
|
||
raw_data = self.census_acs(require=True).load() | ||
acs = h5py.File(self.file_path, mode="w") | ||
person, household = [ | ||
raw_data[entity] for entity in ("person", "household") | ||
] | ||
|
||
self.add_id_variables(acs, person, household) | ||
self.add_person_variables(acs, person, household) | ||
self.add_household_variables(acs, household) | ||
|
||
acs.close() | ||
raw_data.close() | ||
|
||
@staticmethod | ||
def add_id_variables( | ||
acs: h5py.File, | ||
person: DataFrame, | ||
household: DataFrame, | ||
) -> None: | ||
# Create numeric IDs based on SERIALNO | ||
h_id_to_number = pd.Series( | ||
np.arange(len(household)), index=household["SERIALNO"] | ||
) | ||
household["household_id"] = h_id_to_number[ | ||
household["SERIALNO"] | ||
].values | ||
person["household_id"] = h_id_to_number[person["SERIALNO"]].values | ||
person["person_id"] = person.index + 1 | ||
|
||
acs["person_id"] = person["person_id"] | ||
acs["household_id"] = household["household_id"] | ||
acs["spm_unit_id"] = acs["household_id"] | ||
acs["tax_unit_id"] = acs["household_id"] | ||
acs["family_id"] = acs["household_id"] | ||
acs["marital_unit_id"] = acs["household_id"] | ||
acs["person_household_id"] = person["household_id"] | ||
acs["person_spm_unit_id"] = person["household_id"] | ||
acs["person_tax_unit_id"] = person["household_id"] | ||
acs["person_family_id"] = person["household_id"] | ||
acs["person_marital_unit_id"] = person["household_id"] | ||
acs["household_weight"] = household.WGTP | ||
|
||
@staticmethod | ||
def add_person_variables( | ||
acs: h5py.File, person: DataFrame, household: DataFrame | ||
) -> None: | ||
acs["age"] = person.AGEP | ||
acs["is_male"] = person.SEX == 1 | ||
acs["employment_income"] = person.WAGP | ||
acs["self_employment_income"] = person.SEMP | ||
acs["social_security"] = person.SSP | ||
acs["taxable_private_pension_income"] = person.RETP | ||
person[["rent", "real_estate_taxes"]] = ( | ||
household.set_index("household_id") | ||
.loc[person["household_id"]][["RNTP", "TAXAMT"]] | ||
.values | ||
) | ||
acs["is_household_head"] = person.SPORDER == 1 | ||
factor = person.SPORDER == 1 | ||
person.rent *= factor * 12 | ||
person.real_estate_taxes *= factor | ||
acs["rent"] = person.rent | ||
acs["real_estate_taxes"] = person.real_estate_taxes | ||
acs["tenure_type"] = ( | ||
household.TEN.astype(int) | ||
.map( | ||
{ | ||
1: "OWNED_WITH_MORTGAGE", | ||
2: "OWNED_OUTRIGHT", | ||
3: "RENTED", | ||
} | ||
) | ||
.fillna("NONE") | ||
.astype("S") | ||
) | ||
|
||
@staticmethod | ||
def add_spm_variables(acs: h5py.File, spm_unit: DataFrame) -> None: | ||
acs["spm_unit_net_income_reported"] = spm_unit.SPM_RESOURCES | ||
acs["spm_unit_spm_threshold"] = spm_unit.SPM_POVTHRESHOLD | ||
|
||
@staticmethod | ||
def add_household_variables(acs: h5py.File, household: DataFrame) -> None: | ||
acs["household_vehicles_owned"] = household.VEH | ||
acs["state_fips"] = acs["household_state_fips"] = household.ST.astype( | ||
int | ||
) | ||
|
||
|
||
class ACS_2022(ACS): | ||
name = "acs_2022" | ||
label = "ACS 2022" | ||
time_period = 2022 | ||
file_path = STORAGE_FOLDER / "acs_2022.h5" | ||
census_acs = CensusACS_2022 | ||
url = "release://PolicyEngine/policyengine-us-data/release/acs_2022.h5" | ||
|
||
|
||
if __name__ == "__main__": | ||
ACS_2022().generate() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,208 @@ | ||
from io import BytesIO | ||
import logging | ||
from typing import List | ||
from zipfile import ZipFile | ||
import pandas as pd | ||
from policyengine_core.data import Dataset | ||
import requests | ||
from tqdm import tqdm | ||
from policyengine_us_data.storage import STORAGE_FOLDER | ||
|
||
logging.getLogger().setLevel(logging.INFO) | ||
|
||
PERSON_COLUMNS = [ | ||
"SERIALNO", # Household ID | ||
"SPORDER", # Person number within household | ||
"PWGTP", # Person weight | ||
"AGEP", # Age | ||
"CIT", # Citizenship | ||
"MAR", # Marital status | ||
"WAGP", # Wage/salary | ||
"SSP", # Social security income | ||
"SSIP", # Supplemental security income | ||
"SEX", # Sex | ||
"SEMP", # Self-employment income | ||
"SCHL", # Educational attainment | ||
"RETP", # Retirement income | ||
"PAP", # Public assistance income | ||
"OIP", # Other income | ||
"PERNP", # Total earnings | ||
"PINCP", # Total income | ||
"POVPIP", # Income-to-poverty line percentage | ||
"RAC1P", # Race | ||
] | ||
|
||
HOUSEHOLD_COLUMNS = [ | ||
"SERIALNO", # Household ID | ||
"PUMA", # PUMA area code | ||
"ST", # State code | ||
"ADJHSG", # Adjustment factor for housing dollar amounts | ||
"ADJINC", # Adjustment factor for income | ||
"WGTP", # Household weight | ||
"NP", # Number of persons in household | ||
"BDSP", # Number of bedrooms | ||
"ELEP", # Electricity monthly cost | ||
"FULP", # Fuel monthly cost | ||
"GASP", # Gas monthly cost | ||
"RMSP", # Number of rooms | ||
"RNTP", # Monthly rent | ||
"TEN", # Tenure | ||
"VEH", # Number of vehicles | ||
"FINCP", # Total income | ||
"GRNTP", # Gross rent | ||
"TAXAMT", # Property taxes | ||
] | ||
|
||
|
||
class CensusACS(Dataset): | ||
data_format = Dataset.TABLES | ||
|
||
def generate(self) -> None: | ||
spm_url = f"https://www2.census.gov/programs-surveys/supplemental-poverty-measure/datasets/spm/spm_{self.time_period}_pu.dta" | ||
person_url = f"https://www2.census.gov/programs-surveys/acs/data/pums/{self.time_period}/1-Year/csv_pus.zip" | ||
household_url = f"https://www2.census.gov/programs-surveys/acs/data/pums/{self.time_period}/1-Year/csv_hus.zip" | ||
|
||
with pd.HDFStore(self.file_path, mode="w") as storage: | ||
household = self.process_household_data( | ||
household_url, "psam_hus", HOUSEHOLD_COLUMNS | ||
) | ||
person = self.process_person_data( | ||
person_url, "psam_pus", PERSON_COLUMNS | ||
) | ||
person = person[person.SERIALNO.isin(household.SERIALNO)] | ||
household = household[household.SERIALNO.isin(person.SERIALNO)] | ||
storage["household"] = household | ||
storage["person"] = person | ||
|
||
@staticmethod | ||
def process_household_data( | ||
url: str, prefix: str, columns: List[str] | ||
) -> pd.DataFrame: | ||
req = requests.get(url, stream=True) | ||
with BytesIO() as f: | ||
pbar = tqdm() | ||
for chunk in req.iter_content(chunk_size=1024): | ||
if chunk: | ||
pbar.update(len(chunk)) | ||
f.write(chunk) | ||
f.seek(0) | ||
zf = ZipFile(f) | ||
a = pd.read_csv( | ||
zf.open(prefix + "a.csv"), | ||
usecols=columns, | ||
dtype={"SERIALNO": str}, | ||
) | ||
b = pd.read_csv( | ||
zf.open(prefix + "b.csv"), | ||
usecols=columns, | ||
dtype={"SERIALNO": str}, | ||
) | ||
res = pd.concat([a, b]).fillna(0) | ||
res.columns = res.columns.str.upper() | ||
|
||
# Ensure correct data types | ||
res["ST"] = res["ST"].astype(int) | ||
|
||
return res | ||
|
||
@staticmethod | ||
def process_person_data( | ||
url: str, prefix: str, columns: List[str] | ||
) -> pd.DataFrame: | ||
req = requests.get(url, stream=True) | ||
with BytesIO() as f: | ||
pbar = tqdm() | ||
for chunk in req.iter_content(chunk_size=1024): | ||
if chunk: | ||
pbar.update(len(chunk)) | ||
f.write(chunk) | ||
f.seek(0) | ||
zf = ZipFile(f) | ||
a = pd.read_csv( | ||
zf.open(prefix + "a.csv"), | ||
usecols=columns, | ||
dtype={"SERIALNO": str}, | ||
) | ||
b = pd.read_csv( | ||
zf.open(prefix + "b.csv"), | ||
usecols=columns, | ||
dtype={"SERIALNO": str}, | ||
) | ||
res = pd.concat([a, b]).fillna(0) | ||
res.columns = res.columns.str.upper() | ||
|
||
# Ensure correct data types | ||
res["SPORDER"] = res["SPORDER"].astype(int) | ||
|
||
return res | ||
|
||
@staticmethod | ||
def create_spm_unit_table( | ||
storage: pd.HDFStore, person: pd.DataFrame | ||
) -> None: | ||
SPM_UNIT_COLUMNS = [ | ||
"CAPHOUSESUB", | ||
"CAPWKCCXPNS", | ||
"CHILDCAREXPNS", | ||
"EITC", | ||
"ENGVAL", | ||
"EQUIVSCALE", | ||
"FEDTAX", | ||
"FEDTAXBC", | ||
"FICA", | ||
"GEOADJ", | ||
"MEDXPNS", | ||
"NUMADULTS", | ||
"NUMKIDS", | ||
"NUMPER", | ||
"POOR", | ||
"POVTHRESHOLD", | ||
"RESOURCES", | ||
"SCHLUNCH", | ||
"SNAPSUB", | ||
"STTAX", | ||
"TENMORTSTATUS", | ||
"TOTVAL", | ||
"WCOHABIT", | ||
"WICVAL", | ||
"WKXPNS", | ||
"WUI_LT15", | ||
"ID", | ||
] | ||
spm_table = ( | ||
person[["SPM_" + column for column in SPM_UNIT_COLUMNS]] | ||
.groupby(person.SPM_ID) | ||
.first() | ||
) | ||
|
||
original_person_table = storage["person"] | ||
original_person_table.to_csv("person.csv") | ||
person.to_csv("spm_person.csv") | ||
|
||
# Ensure SERIALNO is treated as string | ||
JOIN_COLUMNS = ["SERIALNO", "SPORDER"] | ||
original_person_table["SERIALNO"] = original_person_table[ | ||
"SERIALNO" | ||
].astype(str) | ||
original_person_table["SPORDER"] = original_person_table[ | ||
"SPORDER" | ||
].astype(int) | ||
person["SERIALNO"] = person["SERIALNO"].astype(str) | ||
person["SPORDER"] = person["SPORDER"].astype(int) | ||
|
||
# Add SPM_ID from the SPM person table to the original person table. | ||
combined_person_table = pd.merge( | ||
original_person_table, | ||
person[JOIN_COLUMNS + ["SPM_ID"]], | ||
on=JOIN_COLUMNS, | ||
) | ||
|
||
storage["person_matched"] = combined_person_table | ||
storage["spm_unit"] = spm_table | ||
|
||
|
||
class CensusACS_2022(CensusACS): | ||
label = "Census ACS (2022)" | ||
name = "census_acs_2022.h5" | ||
file_path = STORAGE_FOLDER / "census_acs_2022.h5" | ||
time_period = 2022 |
Oops, something went wrong.