Skip to content

Commit

Permalink
update notebooks
Browse files Browse the repository at this point in the history
  • Loading branch information
Paul-Saves committed Dec 20, 2024
1 parent 27feb83 commit 664d213
Show file tree
Hide file tree
Showing 3 changed files with 25 additions and 24 deletions.
1 change: 1 addition & 0 deletions AUTHORS.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ SMT has been developed thanks to contributions from:
* Ewout ter Hoeven
* Florent Vergnes
* Frederick Zahle
* Heine Røstum
* Hugo Reimeringer
* Hugo Valayer
* Jasper Bussemaker
Expand Down
42 changes: 21 additions & 21 deletions tutorial/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,104 +10,104 @@ These tutorials introduce to use the opensource Surrogate Modeling Toolbox where

## Surrogate-based Optimization

### Efficient Global Optimization: How to start?
* ### Efficient Global Optimization: How to start?

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/SBO/SMT_SBO_EGO_Educational.ipynb)

### Bayesian Optimization - Efficient Global Optimization to solve unconstrained problems
* ### Bayesian Optimization - Efficient Global Optimization to solve expensive problems

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/SBO/SMT_EGO_application.ipynb)

### Bayesian Optimization with noisy data
* ### Bayesian Optimization with noisy data

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/SBO/SMT_EGO_noisyGP.ipynb)

## Multi-Fidelity Gaussian Process

### With required nested sampling
* ### With required nested sampling

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/MultiFi/SMT_MFK_tutorial.ipynb)

#### With noise
* #### With noise

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/MultiFi/SMT_MFK_Noise.ipynb)

#### Adaptative sampling
* #### Adaptative sampling

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/MultiFi/ADOE_MFK_Forrester_1D2F.ipynb)

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/MultiFi/ADOE_MFK_Rosenbrock_2D2F.ipynb)

### Without nested sampling
* ### Without nested sampling

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/MultiFi/SMT_MFCK_tutorial.ipynb)

## Proper Orthogonal Decomposition and Interpolation

### PODI+I tutorial in SMT with global and local basis
* ### PODI+I tutorial in SMT with global and local basis

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/PODI/SMT_PODI_tutorial.ipynb)

### PODI+I application to airfoil design
* ### PODI+I application to airfoil design

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/PODI/SMT_PODI_Airfoil.ipynb)


## Kernel Engineering

### Kernel engineering tutorial in SMT
* ### Kernel engineering tutorial in SMT

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/Kernels/SMT_Kernel_tutorial.ipynb)

### Kernel engineering application to aeroelasticity prediction
* ### Kernel engineering application to aeroelasticity prediction

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/Kernels/SMT_Kernel_Hale.ipynb)

## Explainability and conformal prediction

### Warning: [The explainability usage tutorial has been moved to SMTorg/smt-explainability](https://github.com/SMTorg/smt-explainability)
* ### Warning: [The explainability usage tutorial has been moved to SMTorg/smt-explainability](https://github.com/SMTorg/smt-explainability)

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt-explainability/blob/master/tutorial/Explainability_tools.ipynb)


## Other Gaussian Process Models and Sampling Methods

### LHS sampling (initial and expanded)
* ### LHS sampling (initial and expanded)

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/Misc/SMT_ExpandedLHS.ipynb)

### Gaussian Process Trajectory Sampling
* ### Gaussian Process Trajectory Sampling

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/Misc/SMT_GP_Sampling.ipynb)

### Noisy Gaussian Process
* ### Noisy Gaussian Process

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/Misc/SMT_Noise.ipynb)

### Sparse Gaussian Process
* ### Sparse Gaussian Process

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/Misc/SMT_SGP_analytic.ipynb)


### Cooperative Components Kriging
* ### Cooperative Components Kriging

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/Misc/SMT_CoopCompKRG.ipynb)


## Mixed-integer and mixed-hierarchical surrogate models

### Warning: [The Design Space usage tutorial has been moved to SMTorg/smt-design-space-ext](https://github.com/SMTorg/smt-design-space-ext)
* ### Warning: [The Design Space usage tutorial has been moved to SMTorg/smt-design-space-ext](https://github.com/SMTorg/smt-design-space-ext)

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt-design-space-ext/blob/master/tutorial/SMT_DesignSpace_example.ipynb)

### Specific notebook associated to the SMT 2.0 Journal Paper (submitted) with a focus on mixed integer and mixed hierarchical surrogate models (continuous, discrete, categorical)
* ### Specific notebook associated to the SMT 2.0 Journal Paper (submitted) with a focus on mixed integer and mixed hierarchical surrogate models (continuous, discrete, categorical)

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/MixedInteger/RunTestCases_Paper_SMT_v2.ipynb)

### Mixed-Integer Gaussian Process and Bayesian Optimization to solve unconstrained problems with mixed variables (continuous, discrete, categorical)
* ### Mixed-Integer Gaussian Process and Bayesian Optimization to solve unconstrained problems with mixed variables (continuous, discrete, categorical)

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/MixedInteger/SMT_MixedInteger.ipynb)

### Mixed-Integer Gaussian Process and Bayesian Optimization for Engineering application
* ### Mixed-Integer Gaussian Process and Bayesian Optimization for Engineering application

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/MixedInteger/SMT_MixedInteger_Engineering_applications.ipynb)
6 changes: 3 additions & 3 deletions tutorial/SBO/SMT_EGO_application.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
"This tutorial describes how to use the SMT toolbox to do some Bayesian Optimization (EGO method) to solve unconstrained optimization problem\n",
"<div>\n",
" \n",
"Rémy Priem, Nathalie Bartoli, Paul Saves, Heine Røstum - December 2024\n",
"Rémy Priem, Nathalie Bartoli, Paul Saves, Heine Røstum, Joseph Morlier - December 2024\n",
"\n",
"based on `SMT 2.8.1 version` "
]
Expand Down Expand Up @@ -1394,8 +1394,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Finding the optimal variabel combination $\\textbf{x}^*$\n",
"The purpose is to find the optimal variabel combination $\\textbf{x}^*$, which can be found by maximizing the aquisition function $\\text{cEI(\\textbf{x})}$:\n",
"## Finding the optimal variable $\\textbf{x}^*$\n",
"The purpose is to find the optimal variable combination $\\textbf{x}^*$, which can be found by maximizing the aquisition function $\\text{cEI}(\\textbf{x})$:\n",
"$$ \\textbf{x}^* = \\underset{\\textbf{x} \\in \\textbf{X}}{\\text{arg max }} \\text{cEI}(\\textbf{x})$$\n",
"For the maximization purpose Evolutionary Strategy of the python package Pymoo is used."
]
Expand Down

0 comments on commit 664d213

Please sign in to comment.