Skip to content

ASR Benchmark

Hui Zhang edited this page Jul 8, 2022 · 23 revisions

ASR Benchmark

RTF 定义

RTF = 处理语音总时长 / 语音总时长

测试数据

Aishell-1 test 集作为测试集。

TODO:数据分布。

Non-Streaming ASR

机器硬件:CPU:Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz , GPU: V100-SXM2-32GB
测试脚本:CLI

GPU-1

Acoustic Model dedoding_method ctc_weight decoding_chunk_size num_decoding_left_chunk RTF
conformer_aishell attention_rescoring 0.5 16 -1 0.0623
conformer_wenetspeech attention_rescoring 0.5 16 -1 0.0623
deepspeech2offline_aishell ctc_prefix_beam_search - 1 - 0.1787

CPU

Acoustic Model dedoding_method ctc_weight decoding_chunk_size num_decoding_left_chunk RTF
conformer_aishell attention_rescoring 0.5 16 -1 0.3
conformer_wenetspeech attention_rescoring 0.5 16 -1 0.51539
deepspeech2offline_aishell ctc_prefix_beam_search - 1 - 0.3953

Streaming ASR

机器硬件:CPU:Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz , GPU: V100-SXM2-32GB
测试脚本:Streaming Server

GPU-1

Acoustic Model enigne dedoding_method ctc_weight decoding_chunk_size num_decoding_left_chunk RTF
conformer_online_multicn python attention_rescoring 0.5 16 -1 0.250782
conformer_wenetspeech python attention_rescoring 0.5 16 -1 0.26339
deepspeech2online_aishell inference ctc_prefix_beam_search - 1 - 0.351434

CPU

Acoustic Model Model Size enigne dedoding_method ctc_weight decoding_chunk_size num_decoding_left_chunk RTF CER
conformer_online_multicn - python attention_rescoring 0.5 16 -1 1.55706 -
conformer_wenetspeech - python attention_rescoring 0.5 16 -1 0.8712686765174202(utts=40) -
conformer_wenetspeech(reduce attention cache) - python attention_rescoring 0.5 16 -1 0.7847489114800089(utts=40) -
deepspeech2online_aishell - infernece ctc_prefix_beam_search - 1 - 0.874739 -
deepspeech2online_wenetspeech 659MB infernece ctc_prefix_beam_search - 1 - 1.9108175171428279(utts=40) -
deepspeech2online_wenetspeech 659MB onnx ctc_prefix_beam_search - 1 - 0.7067303276583338 (utts=40) 1.76%
deepspeech2online_wenetspeech 166MB onnx quant ctc_prefix_beam_search - 1 - 0.40434764591598454 (utts=40) 1.95%

量化(quant)CER会升高。量化和机器有关,不是所有机器都支持。ONNX quant测试机器指令集支持: Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology eagerfpu pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 arat umip pku ospke avx512_vnni spec_ctrl