-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* 2D convection miniapp * rename advection miniapps * update constructors * 2D WENO5 convection mini app * new miniapps * format
- Loading branch information
1 parent
3730890
commit 65c8000
Showing
8 changed files
with
935 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,322 @@ | ||
using JustRelax | ||
|
||
# setup ParallelStencil.jl environment | ||
model = PS_Setup(:CUDA, Float64, 2) | ||
environment!(model) | ||
|
||
using Printf, LinearAlgebra, GeoParams, GLMakie, SpecialFunctions | ||
|
||
# function to compute strain rate (compulsory) | ||
@inline function custom_εII(a::CustomRheology, TauII; args...) | ||
η = custom_viscosity(a; args...) | ||
return TauII / η * 0.5 | ||
end | ||
|
||
# function to compute deviatoric stress (compulsory) | ||
@inline function custom_τII(a::CustomRheology, EpsII; args...) | ||
η = custom_viscosity(a; args...) | ||
return 2.0 * η * EpsII | ||
end | ||
|
||
# helper function (optional) | ||
@inline function custom_viscosity(a::CustomRheology; P=0.0, T=273.0, depth=0.0, kwargs...) | ||
(; η0, Ea, Va, T0, R, cutoff) = a.args | ||
η = η0 * exp((Ea + P * Va) / (R * T) - Ea / (R * T0)) | ||
correction = (depth ≤ 660e3) + (2740e3 ≥ depth > 660e3) * 1e1 + (depth > 2700e3) * 1e-1 | ||
η = clamp(η * correction, cutoff...) | ||
end | ||
|
||
# HELPER FUNCTIONS --------------------------------------------------------------- | ||
|
||
import ParallelStencil.INDICES | ||
const idx_j = INDICES[2] | ||
macro all_j(A) | ||
esc(:($A[$idx_j])) | ||
end | ||
|
||
@parallel function init_P!(P, ρg, z) | ||
@all(P) = @all(ρg)*abs(@all_j(z)) | ||
return nothing | ||
end | ||
|
||
# Half-space-cooling model | ||
@parallel_indices (i, j) function init_T!(T, z, κ, Tm, Tp, Tmin, Tmax) | ||
yr = 3600*24*365.25 | ||
dTdz = (Tm-Tp)/2890e3 | ||
zᵢ = abs(z[j]) | ||
Tᵢ = Tp + dTdz*(zᵢ) | ||
time = 100e6 * yr | ||
Ths = Tmin + (Tm -Tmin) * erf((zᵢ)*0.5/(κ*time)^0.5) | ||
T[i, j] = min(Tᵢ, Ths) | ||
return | ||
end | ||
|
||
function circular_perturbation!(T, δT, xc, yc, r, xvi) | ||
|
||
@parallel_indices (i, j) function _circular_perturbation!(T, δT, xc, yc, r, x, y) | ||
@inbounds if (((x[i] - xc))^2 + ((y[j] - yc))^2) ≤ r^2 | ||
T[i, j] *= δT / 100 + 1 | ||
end | ||
return nothing | ||
end | ||
|
||
@parallel _circular_perturbation!(T, δT, xc, yc, r, xvi...) | ||
end | ||
|
||
function random_perturbation!(T, δT, xbox, ybox, xvi) | ||
|
||
@parallel_indices (i, j) function _random_perturbation!(T, δT, xbox, ybox, x, y) | ||
@inbounds if (xbox[1] ≤ x[i] ≤ xbox[2]) && (abs(ybox[1]) ≤ abs(y[j]) ≤ abs(ybox[2])) | ||
δTi = δT * (rand() - 0.5) # random perturbation within ±δT [%] | ||
T[i, j] *= δTi / 100 + 1 | ||
end | ||
return nothing | ||
end | ||
|
||
@parallel (@idx size(T)) _random_perturbation!(T, δT, xbox, ybox, xvi...) | ||
end | ||
|
||
# -------------------------------------------------------------------------------- | ||
# BEGIN MAIN SCRIPT | ||
# -------------------------------------------------------------------------------- | ||
function thermal_convection2D(igg; ar=8, ny=16, nx=ny*8, figdir="figs2D", thermal_perturbation = :circular) | ||
|
||
# Physical domain ------------------------------------ | ||
ly = 2890e3 | ||
lx = ly * ar | ||
origin = 0.0, -ly # origin coordinates | ||
ni = nx, ny # number of cells | ||
li = lx, ly # domain length in x- and y- | ||
di = @. li / (nx_g(), ny_g()) # grid step in x- and -y | ||
xci, xvi = lazy_grid(di, li, ni; origin=origin) # nodes at the center and vertices of the cells | ||
# ---------------------------------------------------- | ||
|
||
# Weno model ----------------------------------------- | ||
weno = WENO5(ni= ni .+ 1, method=Val{2}()) # ni.+1 for Temp | ||
# ---------------------------------------------------- | ||
|
||
# create rheology struct | ||
v_args = (; η0=5e20, Ea=200e3, Va=2.6e-6, T0=1.6e3, R=8.3145, cutoff=(1e16, 1e25)) | ||
creep = CustomRheology(custom_εII, custom_τII, v_args) | ||
|
||
# Physical properties using GeoParams ---------------- | ||
η_reg = 1e16 | ||
G0 = 70e9 # shear modulus | ||
cohesion = 30e6 | ||
friction = asind(0.01) | ||
pl = DruckerPrager_regularised(; C = cohesion, ϕ=friction, η_vp=η_reg, Ψ=0.0) # non-regularized plasticity | ||
el = SetConstantElasticity(; G=G0, ν=0.5) # elastic spring | ||
β = inv(get_Kb(el)) | ||
|
||
rheology = SetMaterialParams(; | ||
Name = "Mantle", | ||
Phase = 1, | ||
Density = PT_Density(; ρ0=3.1e3, β=β, T0=0.0, α = 1.5e-5), | ||
HeatCapacity = ConstantHeatCapacity(; cp=1.2e3), | ||
Conductivity = ConstantConductivity(; k=3.0), | ||
CompositeRheology = CompositeRheology((creep, el, )), | ||
Elasticity = el, | ||
Gravity = ConstantGravity(; g=9.81), | ||
) | ||
rheology_plastic = SetMaterialParams(; | ||
Name = "Mantle", | ||
Phase = 1, | ||
Density = PT_Density(; ρ0=3.5e3, β=β, T0=0.0, α = 1.5e-5), | ||
HeatCapacity = ConstantHeatCapacity(; cp=1.2e3), | ||
Conductivity = ConstantConductivity(; k=3.0), | ||
CompositeRheology = CompositeRheology((creep, el, pl)), | ||
Elasticity = el, | ||
Gravity = ConstantGravity(; g=9.81), | ||
) | ||
# heat diffusivity | ||
κ = (rheology.Conductivity[1].k / (rheology.HeatCapacity[1].cp * rheology.Density[1].ρ0)).val | ||
dt = dt_diff = 0.5 * min(di...)^2 / κ / 2.01 # diffusive CFL timestep limiter | ||
# ---------------------------------------------------- | ||
|
||
# TEMPERATURE PROFILE -------------------------------- | ||
thermal = ThermalArrays(ni) | ||
thermal_bc = TemperatureBoundaryConditions(; | ||
no_flux = (left = true, right = true, top = false, bot = false), | ||
periodicity = (left = false, right = false, top = false, bot = false), | ||
) | ||
# initialize thermal profile - Half space cooling | ||
adiabat = 0.3 # adiabatic gradient | ||
Tp = 1900 | ||
Tm = Tp + adiabat * 2890 | ||
Tmin, Tmax = 300.0, 3.5e3 | ||
@parallel init_T!(thermal.T, xvi[2], κ, Tm, Tp, Tmin, Tmax) | ||
thermal_bcs!(thermal.T, thermal_bc) | ||
# Temperature anomaly | ||
if thermal_perturbation == :random | ||
δT = 5.0 # thermal perturbation (in %) | ||
random_perturbation!(thermal.T, δT, (lx*1/8, lx*7/8), (-2000e3, -2600e3), xvi) | ||
|
||
elseif thermal_perturbation == :circular | ||
δT = 10.0 # thermal perturbation (in %) | ||
xc, yc = 0.5*lx, -0.75*ly # center of the thermal anomaly | ||
r = 150e3 # radius of perturbation | ||
circular_perturbation!(thermal.T, δT, xc, yc, r, xvi) | ||
end | ||
@views thermal.T[:, 1] .= Tmax | ||
@views thermal.T[:, end] .= Tmin | ||
@parallel (@idx ni) temperature2center!(thermal.Tc, thermal.T) | ||
# ---------------------------------------------------- | ||
|
||
# STOKES --------------------------------------------- | ||
# Allocate arrays needed for every Stokes problem | ||
stokes = StokesArrays(ni, ViscoElastic) | ||
pt_stokes = PTStokesCoeffs(li, di; ϵ=1e-4, CFL = 0.8 / √2.1) | ||
# Buoyancy forces | ||
ρg = @zeros(ni...), @zeros(ni...) | ||
for _ in 1:2 | ||
@parallel (@idx ni) compute_ρg!(ρg[2], rheology, (T=thermal.Tc, P=stokes.P)) | ||
@parallel init_P!(stokes.P, ρg[2], xci[2]) | ||
end | ||
|
||
# Rheology | ||
η = @ones(ni...) | ||
depth = PTArray([y for x in xci[1], y in xci[2]]) | ||
args = (; T = thermal.Tc, P = stokes.P, depth = depth, dt = Inf) | ||
η_cutoff = 1e18, 1e23 | ||
@parallel (@idx ni) compute_viscosity!( | ||
η, 1.0, @strain(stokes)..., args, rheology, η_cutoff | ||
) | ||
η_vep = deepcopy(η) | ||
|
||
# PT coefficients for thermal diffusion | ||
pt_thermal = PTThermalCoeffs( | ||
rheology, args, dt, ni, di, li; ϵ=1e-5, CFL=1e-3 / √2.1 | ||
) | ||
|
||
# Boundary conditions | ||
flow_bcs = FlowBoundaryConditions(; | ||
free_slip = (left = true, right=true, top=true, bot=true), | ||
periodicity = (left = false, right = false, top = false, bot = false), | ||
) | ||
# ---------------------------------------------------- | ||
|
||
# IO ------------------------------------------------- | ||
# if it does not exist, make folder where figures are stored | ||
!isdir(figdir) && mkpath(figdir) | ||
# ---------------------------------------------------- | ||
|
||
# Plot initial T and η profiles | ||
fig0 = let | ||
Yv = [y for x in xvi[1], y in xvi[2]][:] | ||
Y = [y for x in xci[1], y in xci[2]][:] | ||
fig = Figure(resolution = (1200, 900)) | ||
ax1 = Axis(fig[1,1], aspect = 2/3, title = "T") | ||
ax2 = Axis(fig[1,2], aspect = 2/3, title = "log10(η)") | ||
lines!(ax1, Array(thermal.T[2:end-1,:][:]), Yv./1e3) | ||
lines!(ax2, Array(log10.(η[:])), Y./1e3) | ||
ylims!(ax1, -2890, 0) | ||
ylims!(ax2, -2890, 0) | ||
hideydecorations!(ax2) | ||
save(joinpath(figdir, "initial_profile.png"), fig) | ||
fig | ||
end | ||
|
||
# WENO arrays | ||
T_WENO = @zeros(ni.+1) | ||
Vx_v = @zeros(ni.+1...) | ||
Vy_v = @zeros(ni.+1...) | ||
|
||
# Time loop | ||
t, it = 0.0, 0 | ||
local iters | ||
while (t / (1e6 * 3600 * 24 * 365.25)) < 4.5e3 | ||
# Stokes solver ---------------- | ||
args = (; T = thermal.Tc, P = stokes.P, depth = depth, dt=Inf) | ||
@parallel (@idx ni) compute_ρg!(ρg[2], rheology, args) | ||
@parallel (@idx ni) compute_viscosity!( | ||
η, 1.0, @strain(stokes)..., args, rheology, η_cutoff | ||
) | ||
|
||
iters = solve!( | ||
stokes, | ||
pt_stokes, | ||
di, | ||
flow_bcs, | ||
ρg, | ||
η, | ||
η_vep, | ||
rheology, | ||
args, | ||
dt, | ||
igg; | ||
iterMax=50e3, | ||
nout=1e3, | ||
viscosity_cutoff = η_cutoff | ||
); | ||
dt = compute_dt(stokes, di, dt_diff, igg) | ||
# ------------------------------ | ||
|
||
# Thermal solver --------------- | ||
heatdiffusion_PT!( | ||
thermal, | ||
pt_thermal, | ||
thermal_bc, | ||
rheology, | ||
args, | ||
dt, | ||
di; | ||
igg = igg, | ||
iterMax = 10e3, | ||
nout = 1e2, | ||
verbose = true, | ||
) | ||
# Weno advection | ||
T_WENO .= @views thermal.T[2:end-1, :] | ||
JustRelax.velocity2vertex!(Vx_v, Vy_v, @velocity(stokes)...) | ||
WENO_advection!(T_WENO, (Vx_v, Vy_v), weno, di, dt) | ||
@views thermal.T[2:end-1, :] .= T_WENO | ||
# ------------------------------ | ||
|
||
it += 1 | ||
t += dt | ||
|
||
println("\n") | ||
println("Time step number $it") | ||
println(" time = $(t/(1e6 * 3600 * 24 *365.25)) Myrs, dt = $(dt/(1e6 * 3600 * 24 *365.25)) Myrs") | ||
println("\n") | ||
|
||
# Plotting --------------------- | ||
if it == 1 || rem(it, 10) == 0 | ||
fig = Figure(resolution = (1000, 1000), title = "t = $t") | ||
ax1 = Axis(fig[1,1], aspect = ar, title = "T [K] (t=$(t/(1e6 * 3600 * 24 *365.25)) Myrs)") | ||
ax2 = Axis(fig[2,1], aspect = ar, title = "Vy [m/s]") | ||
ax3 = Axis(fig[3,1], aspect = ar, title = "τII [MPa]") | ||
ax4 = Axis(fig[4,1], aspect = ar, title = "log10(η)") | ||
h1 = heatmap!(ax1, xvi[1].*1e-3, xvi[2].*1e-3, Array(thermal.T) , colormap=:batlow) | ||
h2 = heatmap!(ax2, xci[1].*1e-3, xvi[2].*1e-3, Array(stokes.V.Vy[2:end-1,:]) , colormap=:batlow) | ||
h3 = heatmap!(ax3, xci[1].*1e-3, xci[2].*1e-3, Array(stokes.τ.II.*1e-6) , colormap=:batlow) | ||
h4 = heatmap!(ax4, xci[1].*1e-3, xci[2].*1e-3, Array(log10.(η_vep)) , colormap=:batlow) | ||
hidexdecorations!(ax1) | ||
hidexdecorations!(ax2) | ||
hidexdecorations!(ax3) | ||
Colorbar(fig[1,2], h1, height=100) | ||
Colorbar(fig[2,2], h2, height=100) | ||
Colorbar(fig[3,2], h3, height=100) | ||
Colorbar(fig[4,2], h4, height=100) | ||
save( joinpath(figdir, "$(it).png"), fig) | ||
fig | ||
end | ||
# ------------------------------ | ||
|
||
end | ||
|
||
return (ni=ni, xci=xci, li=li, di=di), thermal | ||
end | ||
|
||
figdir = "figs2D_test_weno" | ||
ar = 8 # aspect ratio | ||
n = 128 | ||
nx = n*ar - 2 | ||
ny = n - 2 | ||
igg = if !(JustRelax.MPI.Initialized()) # initialize (or not) MPI grid | ||
IGG(init_global_grid(nx, ny, 0; init_MPI= true)...) | ||
else | ||
igg | ||
end | ||
|
||
thermal_convection2D(igg; figdir=figdir, ar=ar,nx=nx, ny=ny); |
Oops, something went wrong.