-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
3D diffusion mpi; buggy 3D subduction mpi
- Loading branch information
Showing
2 changed files
with
518 additions
and
0 deletions.
There are no files selected for viewing
205 changes: 205 additions & 0 deletions
205
miniapps/benchmarks/thermal_diffusion/diffusion/diffusion3D_multiphase_MPI.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
using JustRelax, JustRelax.JustRelax3D | ||
|
||
|
||
const backend_JR = CPUBackend | ||
|
||
using ParallelStencil | ||
@init_parallel_stencil(Threads, Float64, 3) | ||
|
||
using JustPIC, JustPIC._3D | ||
# Threads is the default backend, | ||
# to run on a CUDA GPU load CUDA.jl (i.e. "using CUDA") at the beginning of the script, | ||
# and to run on an AMD GPU load AMDGPU.jl (i.e. "using AMDGPU") at the beginning of the script. | ||
const backend = JustPIC.CPUBackend # Options: CPUBackend, CUDABackend, AMDGPUBackend | ||
|
||
using GeoParams, GLMakie | ||
|
||
@parallel_indices (i, j, k) function init_T!(T, z) | ||
if z[k] == maximum(z) | ||
T[i, j, k] = 300.0 | ||
elseif z[k] == minimum(z) | ||
T[i, j, k] = 3500.0 | ||
else | ||
T[i, j, k] = z[k] * (1900.0 - 1600.0) / minimum(z) + 1600.0 | ||
end | ||
return nothing | ||
end | ||
|
||
function elliptical_perturbation!(T, δT, xc, yc, zc, r, xvi) | ||
|
||
@parallel_indices (i, j, k) function _elliptical_perturbation!(T, x, y, z) | ||
@inbounds if (((x[i]-xc))^2 + ((y[j] - yc))^2 + ((z[k] - zc))^2) ≤ r^2 | ||
T[i, j, k] += δT | ||
end | ||
return nothing | ||
end | ||
|
||
@parallel _elliptical_perturbation!(T, xvi...) | ||
end | ||
|
||
function init_phases!(phases, particles, xc, yc, zc, r) | ||
ni = size(phases) | ||
center = xc, yc, zc | ||
|
||
@parallel_indices (I...) function init_phases!(phases, px, py, pz, index, center, r) | ||
@inbounds for ip in cellaxes(phases) | ||
# quick escape | ||
@index(index[ip, I...]) == 0 && continue | ||
|
||
x = @index px[ip, I...] | ||
y = @index py[ip, I...] | ||
z = @index pz[ip, I...] | ||
|
||
# plume - rectangular | ||
if (((x - center[1]))^2 + ((y - center[2]))^2 + ((z - center[3]))^2) ≤ r^2 | ||
@index phases[ip, I...] = 2.0 | ||
|
||
else | ||
@index phases[ip, I...] = 1.0 | ||
end | ||
end | ||
return nothing | ||
end | ||
|
||
@parallel (@idx ni) init_phases!(phases, particles.coords..., particles.index, center, r) | ||
end | ||
|
||
function diffusion_3D(; | ||
nx = 32, | ||
ny = 32, | ||
nz = 32, | ||
lx = 100e3, | ||
ly = 100e3, | ||
lz = 100e3, | ||
ρ0 = 3.3e3, | ||
Cp0 = 1.2e3, | ||
K0 = 3.0, | ||
init_MPI = JustRelax.MPI.Initialized() ? false : true, | ||
finalize_MPI = false, | ||
) | ||
|
||
kyr = 1e3 * 3600 * 24 * 365.25 | ||
Myr = 1e6 * 3600 * 24 * 365.25 | ||
ttot = 1 * Myr # total simulation time | ||
dt = 50 * kyr # physical time step | ||
|
||
# Physical domain | ||
ni = (nx, ny, nz) | ||
li = (lx, ly, lz) # domain length in x- and y- | ||
di = @. li / ni # grid step in x- and -y | ||
origin = 0, 0, -lz # nodes at the center and vertices of the cells | ||
igg = IGG(init_global_grid(nx, ny, nz; init_MPI=init_MPI)...) # init MPI | ||
grid = Geometry(ni, li; origin = origin) | ||
(; xci, xvi) = grid # nodes at the center and vertices of the cells | ||
|
||
# Define the thermal parameters with GeoParams | ||
rheology = ( | ||
SetMaterialParams(; | ||
Phase = 1, | ||
Density = PT_Density(; ρ0=3e3, β=0.0, T0=0.0, α = 1.5e-5), | ||
HeatCapacity = ConstantHeatCapacity(; Cp=Cp0), | ||
Conductivity = ConstantConductivity(; k=K0), | ||
RadioactiveHeat = ConstantRadioactiveHeat(1e-6), | ||
), | ||
SetMaterialParams(; | ||
Phase = 2, | ||
Density = PT_Density(; ρ0=3.3e3, β=0.0, T0=0.0, α = 1.5e-5), | ||
HeatCapacity = ConstantHeatCapacity(; Cp=Cp0), | ||
Conductivity = ConstantConductivity(; k=K0), | ||
RadioactiveHeat = ConstantRadioactiveHeat(1e-7), | ||
), | ||
) | ||
|
||
# fields needed to compute density on the fly | ||
P = @zeros(ni...) | ||
args = (; P=P) | ||
|
||
## Allocate arrays needed for every Thermal Diffusion | ||
# general thermal arrays | ||
thermal = ThermalArrays(backend_JR, ni) | ||
thermal.H .= 1e-6 | ||
# physical parameters | ||
ρ = @fill(ρ0, ni...) | ||
Cp = @fill(Cp0, ni...) | ||
K = @fill(K0, ni...) | ||
ρCp = @. Cp * ρ | ||
|
||
# Boundary conditions | ||
thermal_bc = TemperatureBoundaryConditions(; | ||
no_flux = (left = true , right = true , top = false, bot = false, front = true , back = true), | ||
) | ||
|
||
@parallel (@idx size(thermal.T)) init_T!(thermal.T, xvi[3]) | ||
|
||
# Add thermal perturbation | ||
δT = 100e0 # thermal perturbation | ||
r = 10e3 # thermal perturbation radius | ||
center_perturbation = lx/2, ly/2, -lz/2 | ||
elliptical_perturbation!(thermal.T, δT, center_perturbation..., r, xvi) | ||
|
||
# Initialize particles ------------------------------- | ||
nxcell, max_xcell, min_xcell = 20, 20, 1 | ||
particles = init_particles( | ||
backend, nxcell, max_xcell, min_xcell, xvi... | ||
) | ||
pPhases, = init_cell_arrays(particles, Val(1)) | ||
phase_ratios = PhaseRatios(backend, length(rheology), ni) | ||
init_phases!(pPhases, particles, center_perturbation..., r) | ||
update_phase_ratios!(phase_ratios, particles, xci, xvi, pPhases) | ||
# ---------------------------------------------------- | ||
|
||
# PT coefficients for thermal diffusion | ||
args = (; P=P, T=thermal.Tc) | ||
pt_thermal = PTThermalCoeffs(backend_JR, K, ρCp, dt, di, li; CFL = 0.75 / √3.1) | ||
|
||
t = 0.0 | ||
it = 0 | ||
nt = Int(ceil(ttot / dt)) | ||
|
||
# Visualization global arrays | ||
nx_v = ((nx + 1)-2) * igg.dims[1] | ||
ny_v = ((ny + 1)-2) * igg.dims[2] | ||
nz_v = ((nz + 1)-2) * igg.dims[3] | ||
T_v = zeros(nx_v, ny_v, nz_v) # plotting is done on the CPU | ||
T_nohalo = zeros((nx+1)-2, (ny+1)-2, (nz+1)-2) # plotting is done on the CPU | ||
|
||
# Physical time loop | ||
while it < 10 | ||
heatdiffusion_PT!( | ||
thermal, | ||
pt_thermal, | ||
thermal_bc, | ||
rheology, | ||
args, | ||
dt, | ||
di; | ||
kwargs =(; | ||
igg = igg, | ||
phase = phase_ratios, | ||
iterMax = 10e3, | ||
nout = 1e2, | ||
verbose = true, | ||
) | ||
) | ||
|
||
@views T_nohalo .= Array(thermal.T[2:end-1, 2:end-1, 2:end-1]) # Copy data to CPU removing the halo | ||
gather!(T_nohalo, T_v) | ||
|
||
if igg.me == 0 | ||
slice_j = ny_v >>> 1 | ||
fig, = heatmap(T_v[:, slice_j, :]) | ||
save("temperature_3D_it_$(it)_MPI.png", fig) | ||
println("\n SAVED TEMPERATURE \n") | ||
end | ||
|
||
t += dt | ||
it += 1 | ||
end | ||
|
||
finalize_global_grid(; finalize_MPI=finalize_MPI) | ||
|
||
return thermal | ||
end | ||
|
||
|
||
diffusion_3D() |
Oops, something went wrong.