-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added python stub files for better python IDE support
- Loading branch information
Showing
4 changed files
with
182 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -8,7 +8,7 @@ | |
cmake_minimum_required(VERSION 3.5) | ||
|
||
project(piqp | ||
VERSION 0.3.0 | ||
VERSION 0.3.1 | ||
LANGUAGES C CXX | ||
) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
# Generated using pybind11-stubgen 2.5.1 | ||
from __future__ import annotations | ||
import numpy | ||
import piqp | ||
import scipy.sparse | ||
import typing | ||
__all__ = ['DenseSolver', 'Info', 'PIQP_DUAL_INFEASIBLE', 'PIQP_INVALID_SETTINGS', 'PIQP_MAX_ITER_REACHED', 'PIQP_NUMERICS', 'PIQP_PRIMAL_INFEASIBLE', 'PIQP_SOLVED', 'PIQP_UNSOLVED', 'Result', 'Settings', 'SparseSolver', 'Status'] | ||
class DenseSolver: | ||
def __init__(self: piqp.DenseSolver) -> None: | ||
... | ||
def setup(self: piqp.DenseSolver, P: numpy.ndarray[numpy.float64[m, n], numpy.ndarray.flags.f_contiguous], c: numpy.ndarray[numpy.float64[m, 1]], A: numpy.ndarray[numpy.float64[m, n], numpy.ndarray.flags.f_contiguous] | None = None, b: numpy.ndarray[numpy.float64[m, 1]] | None = None, G: numpy.ndarray[numpy.float64[m, n], numpy.ndarray.flags.f_contiguous] | None = None, h: numpy.ndarray[numpy.float64[m, 1]] | None = None, x_lb: numpy.ndarray[numpy.float64[m, 1]] | None = None, x_ub: numpy.ndarray[numpy.float64[m, 1]] | None = None) -> None: | ||
... | ||
def solve(self: piqp.DenseSolver) -> piqp.Status: | ||
... | ||
def update(self: piqp.DenseSolver, P: numpy.ndarray[numpy.float64[m, n], numpy.ndarray.flags.f_contiguous] | None = None, c: numpy.ndarray[numpy.float64[m, 1]] | None = None, A: numpy.ndarray[numpy.float64[m, n], numpy.ndarray.flags.f_contiguous] | None = None, b: numpy.ndarray[numpy.float64[m, 1]] | None = None, G: numpy.ndarray[numpy.float64[m, n], numpy.ndarray.flags.f_contiguous] | None = None, h: numpy.ndarray[numpy.float64[m, 1]] | None = None, x_lb: numpy.ndarray[numpy.float64[m, 1]] | None = None, x_ub: numpy.ndarray[numpy.float64[m, 1]] | None = None, reuse_preconditioner: bool = True) -> None: | ||
... | ||
@property | ||
def result(self) -> piqp.Result: | ||
... | ||
@property | ||
def settings(self) -> piqp.Settings: | ||
... | ||
@settings.setter | ||
def settings(self) -> piqp.Settings: | ||
... | ||
class Info: | ||
delta: float | ||
dual_inf: float | ||
dual_obj: float | ||
dual_rel_inf: float | ||
dual_step: float | ||
duality_gap: float | ||
duality_gap_rel: float | ||
factor_retires: int | ||
iter: int | ||
mu: float | ||
no_dual_update: int | ||
no_primal_update: int | ||
primal_inf: float | ||
primal_obj: float | ||
primal_rel_inf: float | ||
primal_step: float | ||
reg_limit: float | ||
rho: float | ||
run_time: float | ||
setup_time: float | ||
sigma: float | ||
solve_time: float | ||
status: piqp.Status | ||
update_time: float | ||
def __init__(self: piqp.Info) -> None: | ||
... | ||
class Result: | ||
info: piqp.Info | ||
lambda: numpy.ndarray[numpy.float64[m, 1]] | ||
nu: numpy.ndarray[numpy.float64[m, 1]] | ||
nu_lb: numpy.ndarray[numpy.float64[m, 1]] | ||
nu_ub: numpy.ndarray[numpy.float64[m, 1]] | ||
s: numpy.ndarray[numpy.float64[m, 1]] | ||
s_lb: numpy.ndarray[numpy.float64[m, 1]] | ||
s_ub: numpy.ndarray[numpy.float64[m, 1]] | ||
x: numpy.ndarray[numpy.float64[m, 1]] | ||
y: numpy.ndarray[numpy.float64[m, 1]] | ||
z: numpy.ndarray[numpy.float64[m, 1]] | ||
z_lb: numpy.ndarray[numpy.float64[m, 1]] | ||
z_ub: numpy.ndarray[numpy.float64[m, 1]] | ||
zeta: numpy.ndarray[numpy.float64[m, 1]] | ||
class Settings: | ||
check_duality_gap: bool | ||
compute_timings: bool | ||
delta_init: float | ||
eps_abs: float | ||
eps_duality_gap_abs: float | ||
eps_duality_gap_rel: float | ||
eps_rel: float | ||
iterative_refinement_always_enabled: bool | ||
iterative_refinement_eps_abs: float | ||
iterative_refinement_eps_rel: float | ||
iterative_refinement_max_iter: int | ||
iterative_refinement_min_improvement_rate: float | ||
iterative_refinement_static_regularization_eps: float | ||
iterative_refinement_static_regularization_rel: float | ||
max_factor_retires: int | ||
max_iter: int | ||
preconditioner_iter: int | ||
preconditioner_scale_cost: bool | ||
reg_finetune_dual_update_threshold: int | ||
reg_finetune_lower_limit: float | ||
reg_finetune_primal_update_threshold: int | ||
reg_lower_limit: float | ||
rho_init: float | ||
tau: float | ||
verbose: bool | ||
class SparseSolver: | ||
def __init__(self: piqp.SparseSolver) -> None: | ||
... | ||
def setup(self: piqp.SparseSolver, P: scipy.sparse.csc_matrix, c: numpy.ndarray[numpy.float64[m, 1]], A: scipy.sparse.csc_matrix | None, b: numpy.ndarray[numpy.float64[m, 1]] | None, G: scipy.sparse.csc_matrix | None, h: numpy.ndarray[numpy.float64[m, 1]] | None, x_lb: numpy.ndarray[numpy.float64[m, 1]] | None = None, x_ub: numpy.ndarray[numpy.float64[m, 1]] | None = None) -> None: | ||
... | ||
def solve(self: piqp.SparseSolver) -> piqp.Status: | ||
... | ||
def update(self: piqp.SparseSolver, P: scipy.sparse.csc_matrix | None = None, c: numpy.ndarray[numpy.float64[m, 1]] | None = None, A: scipy.sparse.csc_matrix | None = None, b: numpy.ndarray[numpy.float64[m, 1]] | None = None, G: scipy.sparse.csc_matrix | None = None, h: numpy.ndarray[numpy.float64[m, 1]] | None = None, x_lb: numpy.ndarray[numpy.float64[m, 1]] | None = None, x_ub: numpy.ndarray[numpy.float64[m, 1]] | None = None, reuse_preconditioner: bool = True) -> None: | ||
... | ||
@property | ||
def result(self) -> piqp.Result: | ||
... | ||
@property | ||
def settings(self) -> piqp.Settings: | ||
... | ||
@settings.setter | ||
def settings(self) -> piqp.Settings: | ||
... | ||
class Status: | ||
""" | ||
Members: | ||
PIQP_SOLVED | ||
PIQP_MAX_ITER_REACHED | ||
PIQP_PRIMAL_INFEASIBLE | ||
PIQP_DUAL_INFEASIBLE | ||
PIQP_NUMERICS | ||
PIQP_UNSOLVED | ||
PIQP_INVALID_SETTINGS | ||
""" | ||
PIQP_DUAL_INFEASIBLE: typing.ClassVar[piqp.Status] # value = <Status.PIQP_DUAL_INFEASIBLE: -3> | ||
PIQP_INVALID_SETTINGS: typing.ClassVar[piqp.Status] # value = <Status.PIQP_INVALID_SETTINGS: -10> | ||
PIQP_MAX_ITER_REACHED: typing.ClassVar[piqp.Status] # value = <Status.PIQP_MAX_ITER_REACHED: -1> | ||
PIQP_NUMERICS: typing.ClassVar[piqp.Status] # value = <Status.PIQP_NUMERICS: -8> | ||
PIQP_PRIMAL_INFEASIBLE: typing.ClassVar[piqp.Status] # value = <Status.PIQP_PRIMAL_INFEASIBLE: -2> | ||
PIQP_SOLVED: typing.ClassVar[piqp.Status] # value = <Status.PIQP_SOLVED: 1> | ||
PIQP_UNSOLVED: typing.ClassVar[piqp.Status] # value = <Status.PIQP_UNSOLVED: -9> | ||
__members__: typing.ClassVar[dict[str, piqp.Status]] # value = {'PIQP_SOLVED': <Status.PIQP_SOLVED: 1>, 'PIQP_MAX_ITER_REACHED': <Status.PIQP_MAX_ITER_REACHED: -1>, 'PIQP_PRIMAL_INFEASIBLE': <Status.PIQP_PRIMAL_INFEASIBLE: -2>, 'PIQP_DUAL_INFEASIBLE': <Status.PIQP_DUAL_INFEASIBLE: -3>, 'PIQP_NUMERICS': <Status.PIQP_NUMERICS: -8>, 'PIQP_UNSOLVED': <Status.PIQP_UNSOLVED: -9>, 'PIQP_INVALID_SETTINGS': <Status.PIQP_INVALID_SETTINGS: -10>} | ||
def __eq__(self, other: typing.Any) -> bool: | ||
... | ||
def __getstate__(self) -> int: | ||
... | ||
def __hash__(self) -> int: | ||
... | ||
def __index__(self: piqp.Status) -> int: | ||
... | ||
def __init__(self: piqp.Status, value: int) -> None: | ||
... | ||
def __int__(self: piqp.Status) -> int: | ||
... | ||
def __ne__(self, other: typing.Any) -> bool: | ||
... | ||
def __repr__(self) -> str: | ||
... | ||
def __setstate__(self: piqp.Status, state: int) -> None: | ||
... | ||
def __str__(self) -> str: | ||
... | ||
@property | ||
def name(self) -> str: | ||
... | ||
@property | ||
def value(self) -> int: | ||
... | ||
PIQP_DUAL_INFEASIBLE: piqp.Status # value = <Status.PIQP_DUAL_INFEASIBLE: -3> | ||
PIQP_INVALID_SETTINGS: piqp.Status # value = <Status.PIQP_INVALID_SETTINGS: -10> | ||
PIQP_MAX_ITER_REACHED: piqp.Status # value = <Status.PIQP_MAX_ITER_REACHED: -1> | ||
PIQP_NUMERICS: piqp.Status # value = <Status.PIQP_NUMERICS: -8> | ||
PIQP_PRIMAL_INFEASIBLE: piqp.Status # value = <Status.PIQP_PRIMAL_INFEASIBLE: -2> | ||
PIQP_SOLVED: piqp.Status # value = <Status.PIQP_SOLVED: 1> | ||
PIQP_UNSOLVED: piqp.Status # value = <Status.PIQP_UNSOLVED: -9> | ||
__version__: str = '0.3.1' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -56,6 +56,7 @@ def build_extension(self, ext: CMakeExtension) -> None: | |
f"-DCMAKE_LIBRARY_OUTPUT_DIRECTORY={extdir}{os.sep}", | ||
f"-DPYTHON_EXECUTABLE={sys.executable}", | ||
f"-DCMAKE_BUILD_TYPE={cfg}", # not used on MSVC, but no harm | ||
f"-DBUILD_WITH_TEMPLATE_INSTANTIATION=OFF", | ||
f"-DBUILD_PYTHON_INTERFACE=ON", | ||
f"-DBUILD_C_INTERFACE=OFF", | ||
f"-DBUILD_TESTS=OFF", | ||
|
@@ -143,7 +144,7 @@ def build_extension(self, ext: CMakeExtension) -> None: | |
|
||
setup( | ||
name="piqp", | ||
version="0.3.0", | ||
version="0.3.1", | ||
url='https://github.com/PREDICT-EPFL/piqp', | ||
author="Roland Schwan", | ||
author_email="[email protected]", | ||
|