Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rewriting magnetic braking physics into its own file #75

Draft
wants to merge 3 commits into
base: development
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
361 changes: 361 additions & 0 deletions posydon/binary_evol/DT/magnetic_braking.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,361 @@
"""Magnetic Braking."""


__authors__ = [
"Seth Gossage <[email protected]>"
"Jeffrey Andrews <[email protected]>",
]


import numpy as np

import posydon.utils.constants as const


def calculate_magnetic_braking(p_pri, p_sec, magnetic_braking_mode):
"""Calculate the impact of magnetic braking on a binary.

domega_mb / dt = torque_mb / I is calculated, i.e., the amount of change
in Omega over 1 year.

Parameters
----------
p_pri, p_sec : two tuples
The properties of the primary and secondary stars, respectively. Each
tuple contains, in order, M_pri (the star's mass in Msun), R_pri
(the star's radius in Rsun), Omega_pri (the star's angular velocity in
1/yr), I_pri (the star's moment of inertia in Msun Rsun^2),
tau_conv_pri (the convective timescale of the primary),
and Mdot_pri (the mass loss rate of the star in Msun/yr)
magnetic_braking_mode : string
The magnetic braking prescription used.

Returns
-------
dOmega_mb_sec, dOmega_mb_pri : float
The spin angular velocity derivative for the secondary and primary
stars, respectively (units of yr^-2)

"""
if magnetic_braking_mode == "RVJ83":
return calculate_magnetic_braking_RVJ83(p_pri, p_sec)
elif magnetic_braking_mode == "M15":
return calculate_magnetic_braking_M15(p_pri, p_sec)
elif magnetic_braking_mode == "G18":
return calculate_magnetic_braking_G18(p_pri, p_sec)
elif magnetic_braking_mode == "CARB":
return calculate_magnetic_braking_CARB(p_pri, p_sec)
else:
raise Exception("WARNING: Magnetic braking is not being calculated in"
"the detached step. The given magnetic_braking_mode"
"string \"", magnetic_braking_mode, "\" does not match"
"the available built-in cases. To enable magnetic"
"braking, please set magnetic_braking_mode to one of"
"the following strings:\n"
"\"RVJ83\" for Rappaport, Verbunt, & Joss 1983\n"
"\"G18\" for Garraffo et al. 2018\n"
"\"M15\" for Matt et al. 2015\n"
"\"CARB\" for Van & Ivanova 2019\n")


def calculate_magnetic_braking_RVJ83(p_pri, p_sec):
"""Use the Rappaport, Verbunt, and Joss (1983) prescription.

Calculate the impact of magnetic braking on a binary using the
Rappaport, Verbunt, and Joss 1983, ApJ, 275, 713 prescription. The torque
is taken from eq.36 of Rapport+1983, with γ = 4. Torque units
# converted from cgs units to [Msol], [Rsol], [yr] as all stellar
# parameters are given in units of [Msol], [Rsol], [yr] and so that
# dOmega_mb/dt is in units of [yr^-2].

Parameters
----------
p_pri, p_sec : two tuples
The properties of the primary and secondary stars, respectively. Each
tuple contains, in order, M_pri (the star's mass in Msun), R_pri
(the star's radius in Rsun), Omega_pri (the star's angular velocity in
1/yr), I_pri (the star's moment of inertia in Msun Rsun^2),
tau_conv_pri (the convective timescale of the primary),
and Mdot_pri (the mass loss rate of the star in Msun/yr)

Returns
-------
dOmega_mb_sec, dOmega_mb_pri : float
The spin angular velocity derivative for the secondary and primary
stars, respectively [units of yr^-2]

"""
M_pri, R_pri, Omega_pri, I_pri, tau_conv_pri, Mdot_pri = p_pri
M_sec, R_sec, Omega_sec, I_sec, tau_conv_sec, Mdot_sec = p_sec

# Converting units:
# The constant 3.8e-30 from Rappaport+1983 has units of [cm^-2 s]
# which need to be converted...
#
# -3.8e-30 [cm^-2 s] * (const.rsol**2/const.secyer) -> [Rsol^-2 yr]
# * M [Msol]
# * R ** 4 [Rsol^4]
# * Omega ** 3 [yr^-3]
# / I [Msol Rsol^2 ]
#
# Thus, dOmega/dt comes out to [yr^-2]

dOmega_mb_sec = (
-3.8e30 * (const.rsol**2 / const.secyer)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

My mistake, here's a typo: this should be -3.8e-30 (as in Rappaport, Verbunt, and Joss) not -3.8e30

* M_sec
* R_sec**4
* Omega_sec**3
/ I_sec
* np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1)
)
dOmega_mb_pri = (
-3.8e30 * (const.rsol**2 / const.secyer)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

My mistake, here's a typo: this should be -3.8e-30 (as in Rappaport, Verbunt, and Joss) not -3.8e30

* M_pri
* R_pri**4
* Omega_pri**3
/ I_pri
* np.clip((1.5 - M_pri) / (1.5 - 1.3), 0, 1)
)

return dOmega_mb_sec, dOmega_mb_pri


def calculate_magnetic_braking_M15(p_pri, p_sec):
"""Use the Matt et al. (2015) prescription.

Calculate the impact of magnetic braking on a binary using the
Matt et al. 2015, ApJ, 799, 23 prescription.

Parameters
----------
p_pri, p_sec : two tuples
The properties of the primary and secondary stars, respectively. Each
tuple contains, in order, M_pri (the star's mass in Msun), R_pri
(the star's radius in Rsun), Omega_pri (the star's angular velocity in
1/yr), I_pri (the star's moment of inertia in Msun Rsun^2),
tau_conv_pri (the convective timescale of the primary),
and Mdot_pri (the mass loss rate of the star in Msun/yr)

Returns
-------
dOmega_mb_sec, dOmega_mb_pri : float
The spin angular velocity derivative for the secondary and primary
stars, respectively [units of yr^-2]

"""
M_pri, R_pri, Omega_pri, I_pri, tau_conv_pri, Mdot_pri = p_pri
M_sec, R_sec, Omega_sec, I_sec, tau_conv_sec, Mdot_sec = p_sec

# Torque prescription from Matt et al. 2015, ApJ, 799, L23
# Constants:
# [erg] or [g cm^2 s^-2] -> [Msol Rsol^2 yr^-2]
K = -1.4e30 * const.secyer**2 / (const.msol * const.rsol**2)
# m = 0.22
# p = 2.6
# Above constants were calibrated as in
# Gossage et al. 2021, ApJ, 912, 65

# TODO: I am not sure which constants are used from each reference

# Below, constants are otherwise as assumed as in
# Matt et al. 2015, ApJ, 799, L23
omega_sol = 2.6e-6 * const.secyer # [s^-1] -> [yr^-1]
# solar rossby = 2
# solar convective turnover time = 12.9 days
# Rossby number saturation threshold = 0.14
chi = 2.0 / 0.14
tau_conv_sol = 12.9 / 365.25 # 12.9 [days] -> [yr]

Prot_pri = 2 * np.pi / Omega_pri # [yr]
Rossby_number_pri = Prot_pri / tau_conv_pri
Prot_sec = 2 * np.pi / Omega_sec # [yr]
Rossby_number_sec = Prot_sec / tau_conv_sec

# critical rotation rate in rad/yr
Omega_crit_pri = np.sqrt(
const.standard_cgrav * M_pri * const.msol
/ ((R_pri * const.rsol) ** 3)) * const.secyer
Omega_crit_sec = np.sqrt(
const.standard_cgrav * M_sec * const.msol
/ ((R_sec * const.rsol) ** 3)) * const.secyer

# omega/omega_c
wdivwc_pri = Omega_pri / Omega_crit_pri
wdivwc_sec = Omega_sec / Omega_crit_sec

gamma_pri = (1 + (wdivwc_pri / 0.072)**2)**0.5
T0_pri = K * R_pri**3.1 * M_pri**0.5 * gamma_pri**(-2 * 0.22)
gamma_sec = (1 + (wdivwc_sec / 0.072)**2)**0.5
T0_sec = K * R_sec**3.1 * M_sec**0.5 * gamma_sec**(-2 * 0.22)

if (Rossby_number_sec < 0.14):
dOmega_mb_sec = (
T0_sec * (chi**2.6) * (Omega_sec / omega_sol) / I_sec
* np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1)
)
else:
dOmega_mb_sec = (
T0_sec * ((tau_conv_sec/tau_conv_sol)**2.6)
* ((Omega_sec/omega_sol)**(2.6 + 1)) / I_sec
* np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1)
)

if (Rossby_number_pri < 0.14):
dOmega_mb_pri = (
T0_pri * (chi**2.6) * (Omega_pri / 2.6e-6) / I_pri
* np.clip((1.5 - M_pri) / (1.5 - 1.3), 0, 1)
)
else:
dOmega_mb_pri = (
T0_pri * ((tau_conv_pri/tau_conv_sol)**2.6)
* ((Omega_pri/omega_sol)**(2.6 + 1)) / I_pri
* np.clip((1.5 - M_pri) / (1.5 - 1.3), 0, 1)
)

return dOmega_mb_sec, dOmega_mb_pri


def calculate_magnetic_braking_G18(p_pri, p_sec):
"""Use the Garraffo et al. (2018) prescription.

Calculate the impact of magnetic braking on a binary using the
Garraffo et al. 2018, ApJ, 862, 90 prescription. We adopt the following
constants:
a = 0.03
b = 0.5

Parameters
----------
p_pri, p_sec : two tuples
The properties of the primary and secondary stars, respectively. Each
tuple contains, in order, M_pri (the star's mass in Msun), R_pri
(the star's radius in Rsun), Omega_pri (the star's angular velocity in
1/yr), I_pri (the star's moment of inertia in Msun Rsun^2),
tau_conv_pri (the convective timescale of the primary),
and Mdot_pri (the mass loss rate of the star in Msun/yr)

Returns
-------
dOmega_mb_sec, dOmega_mb_pri : float
The spin angular velocity derivative for the secondary and primary
stars, respectively [units of yr^-2]

"""
M_pri, R_pri, Omega_pri, I_pri, tau_conv_pri, Mdot_pri = p_pri
M_sec, R_sec, Omega_sec, I_sec, tau_conv_sec, Mdot_sec = p_sec

a_const = 0.03
b_const = 0.5

# [g cm^2] -> [Msol Rsol^2]
c = -3e41 / (const.msol * const.rsol**2)
# Above are as calibrated in Gossage et al. 2021, ApJ, 912, 65

Prot_pri = 2 * np.pi / Omega_pri # [yr]
Rossby_number_pri = Prot_pri / tau_conv_pri
Prot_sec = 2 * np.pi / Omega_sec # [yr]
Rossby_number_sec = Prot_sec / tau_conv_sec

n_pri = (a_const / Rossby_number_pri) + b_const * Rossby_number_pri + 1.0
n_sec = (a_const / Rossby_number_sec) + b_const * Rossby_number_sec + 1.0

Qn_pri = 4.05 * np.exp(-1.4 * n_pri)
Qn_sec = 4.05 * np.exp(-1.4 * n_sec)

dOmega_mb_sec = (
c * Omega_sec**3 * tau_conv_sec * Qn_sec / I_sec
* np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1)
)

dOmega_mb_pri = (
c * Omega_pri**3 * tau_conv_pri * Qn_pri / I_pri
* np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1)
)

return dOmega_mb_sec, dOmega_mb_pri


def calculate_magnetic_braking_CARB(p_pri, p_sec):
"""Use the CARB prescription.

Calculate the impact of magnetic braking on a binary using the
Van & Ivanova 2019, ApJ, 886, L31 prescription. Our prescription is based
on files hosted on Zenodo: https://zenodo.org/record/3647683#.Y_TfedLMKUk,
after converting from cgs to solar units.

Parameters
----------
p_pri, p_sec : two tuples
The properties of the primary and secondary stars, respectively. Each
tuple contains, in order, M_pri (the star's mass in Msun), R_pri
(the star's radius in Rsun), Omega_pri (the star's angular velocity in
1/yr), I_pri (the star's moment of inertia in Msun Rsun^2),
tau_conv_pri (the convective timescale of the primary),
and Mdot_pri (the mass loss rate of the star in Msun/yr)

Returns
-------
dOmega_mb_sec, dOmega_mb_pri : float
The spin angular velocity derivative for the secondary and primary
stars, respectively [units of yr^-2]

"""
M_pri, R_pri, Omega_pri, I_pri, tau_conv_pri, Mdot_pri = p_pri
M_sec, R_sec, Omega_sec, I_sec, tau_conv_sec, Mdot_sec = p_sec

# Constants as assumed in Van & Ivanova 2019, ApJ, 886, L31
# with units converted from [cm], [g], [s] to [Rsol], [Msol], [yr]
omega_sol = 3e-6 * const.secyer # [s^-1] -> [yr^-1]
tau_conv_sol = 2.8e6 / const.secyer # [s] -> yr
K2 = 0.07**2

tau_ratio_sec = tau_conv_sec / tau_conv_sol
tau_ratio_pri = tau_conv_pri / tau_conv_sol
rot_ratio_sec = Omega_sec / omega_sol
rot_ratio_pri = Omega_pri / omega_sol

# below in units of [Rsol yr^-1]^2
v_esc2_sec = ((2 * const.standard_cgrav * M_sec / R_sec)
* (const.msol * const.secyer**2 / const.rsol**3))
v_esc2_pri = ((2 * const.standard_cgrav * M_pri / R_pri)
* (const.msol * const.secyer**2 / const.rsol**3))
v_mod2_sec = v_esc2_sec + (2 * Omega_sec**2 * R_sec**2) / K2
v_mod2_pri = v_esc2_pri + (2 * Omega_pri**2 * R_pri**2) / K2

# Van & Ivanova 2019, MNRAS 483, 5595 replace the magnetic field
# with Omega * tau_conv phenomenology. Thus, the ratios
# (rot_ratio_* and tau_ratio_*) inherently have units of Gauss
# [cm^-0.5 g^0.5 s^-1] that needs to be converted to [Rsol],
# [Msol], [yr]. VI2019 assume the solar magnetic field strength is
# on average 1 Gauss.
if (abs(Mdot_sec) > 0):
R_alfven_div_R3_sec = (
R_sec**4 * rot_ratio_sec**4 * tau_ratio_sec**4
/ (Mdot_sec**2 * v_mod2_sec)
* (const.rsol**2 * const.secyer / const.msol**2))
else:
R_alfven_div_R3_sec = 0.0

if (abs(Mdot_pri) > 0):
R_alfven_div_R3_pri = (
R_pri**4 * rot_ratio_pri**4 * tau_ratio_pri**4
/ (Mdot_pri**2 * v_mod2_pri)
* (const.rsol**2 * const.secyer / const.msol**2))
else:
R_alfven_div_R3_pri = 0.0

# Alfven radius in [Rsol]
R_alfven_sec = R_sec * R_alfven_div_R3_sec**(1./3.)
R_alfven_pri = R_pri * R_alfven_div_R3_pri**(1./3.)

dOmega_mb_sec = (
(2./3.) * Omega_sec * Mdot_sec * R_alfven_sec**2 / I_sec
* np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1)
)

dOmega_mb_pri = (
(2./3.) * Omega_pri * Mdot_pri * R_alfven_pri**2 / I_pri
* np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1)
)

return dOmega_mb_sec, dOmega_mb_pri
Loading