We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
keys_to_convert = ['target_qpos', 'target_hand_pos', 'target_hand_rot', 'object_euler_xy', 'object_init_z'] 我使用DexGraspNet生成的数据集与UniDexGrasp2中的数据集不一致,请问哪里有资料可以查看。
The text was updated successfully, but these errors were encountered:
请参考DexGraspNet的table branch:https://github.com/PKU-EPIC/DexGraspNet/tree/table
Sorry, something went wrong.
我看了table分支,还有几点没搞明白。
plane = data_dict['plane'] # plane parameters (A, B, C, D), Ax + By + Cz + D >= 0, A^2 + B^2 + C^2 = 1 translation, euler = plane2euler(plane, axes='sxyz') # object object_euler_xy = torch.tensor([euler[0], euler[1]], dtype=torch.float, device=self.device) object_init_z = torch.tensor([translation[2]], dtype=torch.float, device=self.device) shadow_hand_random_load_vision.py 里面这段应该是转换 'object_euler_xy', 'object_init_z'的方式;pc_feat没有看到在那里生成的
plane = data_dict['plane'] # plane parameters (A, B, C, D), Ax + By + Cz + D >= 0, A^2 + B^2 + C^2 = 1 translation, euler = plane2euler(plane, axes='sxyz') # object object_euler_xy = torch.tensor([euler[0], euler[1]], dtype=torch.float, device=self.device) object_init_z = torch.tensor([translation[2]], dtype=torch.float, device=self.device)
Hi!pc_feat对应论文中pre-train的一个对物体进行classification的模型输出的每个物体的feature,这部分训练代码我们没有release,目前仅将结果保存release了。
No branches or pull requests
keys_to_convert = ['target_qpos', 'target_hand_pos', 'target_hand_rot', 'object_euler_xy', 'object_init_z']
我使用DexGraspNet生成的数据集与UniDexGrasp2中的数据集不一致,请问哪里有资料可以查看。
The text was updated successfully, but these errors were encountered: