Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Generation of condition-specific SBML models #108

Merged
merged 11 commits into from
Feb 16, 2022
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
122 changes: 121 additions & 1 deletion petab/sbml.py
Original file line number Diff line number Diff line change
@@ -1,20 +1,24 @@
"""Functions for interacting with SBML models"""
import logging
import re
from numbers import Number
from pathlib import Path
from typing import Any, Dict, List, Tuple, Union
from typing import Any, Dict, List, Optional, Tuple, Union
from warnings import warn

import libsbml
from pandas.io.common import get_handle, is_file_like, is_url

import petab

logger = logging.getLogger(__name__)
__all__ = ['add_global_parameter',
'add_model_output',
'add_model_output_sigma',
'add_model_output_with_sigma',
'assignment_rules_to_dict',
'create_assigment_rule',
'get_model_for_condition',
'get_model_parameters',
'get_observables',
'get_sbml_model',
Expand Down Expand Up @@ -481,3 +485,119 @@ def load_sbml_from_file(
sbml_model = sbml_document.getModel()

return sbml_reader, sbml_document, sbml_model


def get_model_for_condition(
petab_problem: "petab.Problem",
sim_condition_id: str = None,
preeq_condition_id: Optional[str] = None,
) -> Tuple[libsbml.SBMLDocument, libsbml.Model]:
"""Create an SBML model for the given condition.

Creates a copy of the model and updates parameters according to the PEtab
files. Estimated parameters are set to their ``nominalValue``.
Observables defined in the observables table are not added to the model.

:param petab_problem: PEtab problem
:param sim_condition_id: Simulation conditionId for which to generate a
model
:param preeq_condition_id: Preequilibration conditionId of the settings
dweindl marked this conversation as resolved.
Show resolved Hide resolved
for which to generate a model. This is only used to determine the
relevant output parameter overrides. Preequilibration is not encoded
in the resulting model.
:return: The generated SBML document, and SBML model
"""
condition_dict = {petab.SIMULATION_CONDITION_ID: sim_condition_id}
if preeq_condition_id:
condition_dict[petab.PREEQUILIBRATION_CONDITION_ID] = \
preeq_condition_id
cur_measurement_df = petab.measurements.get_rows_for_condition(
measurement_df=petab_problem.measurement_df,
condition=condition_dict,
)
parameter_map, scale_map = \
petab.parameter_mapping.get_parameter_mapping_for_condition(
condition_id=sim_condition_id,
is_preeq=False,
cur_measurement_df=cur_measurement_df,
sbml_model=petab_problem.sbml_model,
condition_df=petab_problem.condition_df,
parameter_df=petab_problem.parameter_df,
warn_unmapped=True,
scaled_parameters=False,
fill_fixed_parameters=True,
# will only become problematic once the observable and noise terms
# are added to the model
allow_timepoint_specific_numeric_noise_parameters=True,
)
# create a copy of the model
sbml_doc = petab_problem.sbml_model.getSBMLDocument().clone()
sbml_model = sbml_doc.getModel()

# fill in parameters
def get_param_value(parameter_id: str):
"""Parameter value from mapping or nominal value"""
mapped_value = parameter_map.get(parameter_id)
if not isinstance(mapped_value, str):
return mapped_value

# estimated parameter, look up in nominal parameters
return petab_problem.parameter_df.loc[mapped_value,
petab.NOMINAL_VALUE]

for parameter in sbml_model.getListOfParameters():
new_value = get_param_value(parameter.getId())
if new_value:
parameter.setValue(new_value)
# remove rules that would override that value
sbml_model.removeRuleByVariable(parameter.getId())
dweindl marked this conversation as resolved.
Show resolved Hide resolved

# set concentrations for any overridden species
for component_id in petab_problem.condition_df:
sbml_species = sbml_model.getSpecies(component_id)
if not sbml_species:
continue

# if there is an initial assignment or rule for that species,
# remove it, as the species in the condition table would override it
sbml_model.removeInitialAssignment(component_id)
sbml_model.removeRuleByVariable(component_id)

# set initial concentration/amount
new_value = petab.to_float_if_float(
petab_problem.condition_df.loc[sim_condition_id, component_id])
if not isinstance(new_value, Number):
# parameter reference in condition table
new_value = get_param_value(new_value)

if sbml_species.isSetInitialConcentration():
sbml_species.setInitialConcentration(new_value)
elif sbml_species.isSetInitialAmount():
sbml_species.setInitialAmount(new_value)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

else: raise? or default to concentration or amount based on hasOnlySubstanceUnits?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

One of those two has to be set to be valid SBML iirc. But let's raise to be on the safe side.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Apparently fine if e.g. initial assignment is used. From SBML spec:

Missing initialAmount and initialConcentration
values implies that their values either are unknown, or to be obtained from an external source, or determined
by an initial assignment (Section 4.8 on p. 56) or other SBML construct elsewhere in the model.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ah, thanks. Okay, then we need to check hasOnlySubstanceUnits indeed.

else:
raise AssertionError(
"Neither initial amount nor initial concentration "
f"set for {sbml_species.getId()}")

# set compartment size for any compartments in the condition table
for component_id in petab_problem.condition_df:
sbml_compartment = sbml_model.getCompartment(component_id)
if not sbml_compartment:
continue

# if there is an initial assignment or rule for that compartment,
# remove it, as the compartment in the condition table would override
# it
sbml_model.removeInitialAssignment(component_id)
sbml_model.removeRuleByVariable(component_id)

# set initial concentration/amount
new_value = petab.to_float_if_float(
petab_problem.condition_df.loc[sim_condition_id, component_id])
if not isinstance(new_value, Number):
# parameter reference in condition table
new_value = get_param_value(new_value)

sbml_compartment.setSize(new_value)

return sbml_doc, sbml_model
82 changes: 82 additions & 0 deletions tests/test_sbml.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@
import sys
import os

import pandas as pd

sys.path.append(os.getcwd())
import petab # noqa: E402

Expand Down Expand Up @@ -31,3 +33,83 @@ def test_assignment_rules_to_dict():
assert actual == expected
assert model.getAssignmentRuleByVariable('observable_1') is None
assert len(model.getListOfParameters()) == 0


def test_get_condition_specific_models():
"""Test for petab.sbml.get_condition_specific_models"""
# Create test model and data files
sbml_document = libsbml.SBMLDocument(3, 1)
sbml_model = sbml_document.createModel()

c = sbml_model.createCompartment()
c.setId("compartment_1")
c.setSize(1)

for i in range(1, 4):
p = sbml_model.createParameter()
p.setId(f"parameter_{i}")
p.setValue(i)

for i in range(1, 4):
s = sbml_model.createSpecies()
s.setId(f"species_{i}")
s.setInitialConcentration(10 * i)

ia = sbml_model.createInitialAssignment()
ia.setSymbol("species_2")
ia.setMath(libsbml.parseL3Formula("25"))

condition_df = pd.DataFrame({
petab.CONDITION_ID: ["condition_1"],
"parameter_3": ['parameter_2'],
"species_1": [15],
"species_2": [25],
"species_3": ['parameter_1'],
"compartment_1": [2],
})
condition_df.set_index([petab.CONDITION_ID], inplace=True)

observable_df = pd.DataFrame({
petab.OBSERVABLE_ID: ["observable_1"],
petab.OBSERVABLE_FORMULA: ["2 * species_1"],
})
observable_df.set_index([petab.OBSERVABLE_ID], inplace=True)

measurement_df = pd.DataFrame({
petab.OBSERVABLE_ID: ["observable_1"],
petab.SIMULATION_CONDITION_ID: ["condition_1"],
petab.TIME: [0.0],
})

parameter_df = pd.DataFrame({
petab.PARAMETER_ID: ["parameter_1", "parameter_2"],
petab.PARAMETER_SCALE: [petab.LOG10] * 2,
petab.NOMINAL_VALUE: [1.25, 2.25],
petab.ESTIMATE: [0, 1],
})
parameter_df.set_index([petab.PARAMETER_ID], inplace=True)

petab_problem = petab.Problem(
sbml_model=sbml_model,
condition_df=condition_df,
observable_df=observable_df,
measurement_df=measurement_df,
parameter_df=parameter_df
)

# Actual test
condition_doc, condition_model = petab.get_model_for_condition(
petab_problem, "condition_1")

assert condition_model.getSpecies(
"species_1").getInitialConcentration() == 15
assert condition_model.getSpecies(
"species_2").getInitialConcentration() == 25
assert condition_model.getSpecies(
"species_3").getInitialConcentration() == 1.25
assert len(condition_model.getListOfInitialAssignments()) == 0, \
"InitialAssignment not removed"
assert condition_model.getCompartment("compartment_1").getSize() == 2.0
assert condition_model.getParameter("parameter_1").getValue() == 1.25
assert condition_model.getParameter("parameter_2").getValue() == 2.25
assert condition_model.getParameter("parameter_3").getValue() == 2.25