-
Notifications
You must be signed in to change notification settings - Fork 109
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'wangjingyi1999-event' into dev
- Loading branch information
Showing
18 changed files
with
2,417 additions
and
99 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,236 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# 分析结果\n", | ||
"\n", | ||
"这是一个用于分析模型率定后测试结果的 Jupyter Notebook。读取各个exp下面的结果文件看看。" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Please Check your directory:\n", | ||
"ROOT_DIR of the repo: d:\\code\\hydro-model-xaj\n", | ||
"DATASET_DIR of the repo: d:\\data\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import os\n", | ||
"import sys\n", | ||
"from pathlib import Path\n", | ||
"\n", | ||
"sys.path.append(os.path.dirname(Path(os.path.abspath('')).parent))\n", | ||
"import definitions" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"import matplotlib.pyplot as plt" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"metric_mean_file = Path(os.path.join(\"D:/研究生/毕业论文/new毕业论文/预答辩/碧流河水库/模型运行/basins_test_metrics_mean_all_cases.csv\"))\n", | ||
"metric_median_file = Path(os.path.join(\"D:/研究生/毕业论文/new毕业论文/预答辩/碧流河水库/模型运行/basins_test_metrics_median_all_cases.csv\"))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 15, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"metric_mean = pd.read_csv(metric_mean_file, index_col=0)\n", | ||
"metric_median = pd.read_csv(metric_median_file, index_col=0)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<div>\n", | ||
"<style scoped>\n", | ||
" .dataframe tbody tr th:only-of-type {\n", | ||
" vertical-align: middle;\n", | ||
" }\n", | ||
"\n", | ||
" .dataframe tbody tr th {\n", | ||
" vertical-align: top;\n", | ||
" }\n", | ||
"\n", | ||
" .dataframe thead th {\n", | ||
" text-align: right;\n", | ||
" }\n", | ||
"</style>\n", | ||
"<table border=\"1\" class=\"dataframe\">\n", | ||
" <thead>\n", | ||
" <tr style=\"text-align: right;\">\n", | ||
" <th></th>\n", | ||
" <th>Bias</th>\n", | ||
" <th>RMSE</th>\n", | ||
" <th>ubRMSE</th>\n", | ||
" <th>Corr</th>\n", | ||
" <th>R2</th>\n", | ||
" <th>NSE</th>\n", | ||
" <th>KGE</th>\n", | ||
" <th>FHV</th>\n", | ||
" <th>FLV</th>\n", | ||
" </tr>\n", | ||
" </thead>\n", | ||
" <tbody>\n", | ||
" <tr>\n", | ||
" <th>HFsources</th>\n", | ||
" <td>-10.431724</td>\n", | ||
" <td>84.941974</td>\n", | ||
" <td>84.29898</td>\n", | ||
" <td>0.625164</td>\n", | ||
" <td>0.380791</td>\n", | ||
" <td>0.380791</td>\n", | ||
" <td>0.308037</td>\n", | ||
" <td>-30.076788</td>\n", | ||
" <td>-100.0</td>\n", | ||
" </tr>\n", | ||
" </tbody>\n", | ||
"</table>\n", | ||
"</div>" | ||
], | ||
"text/plain": [ | ||
" Bias RMSE ubRMSE Corr R2 NSE \\\n", | ||
"HFsources -10.431724 84.941974 84.29898 0.625164 0.380791 0.380791 \n", | ||
"\n", | ||
" KGE FHV FLV \n", | ||
"HFsources 0.308037 -30.076788 -100.0 " | ||
] | ||
}, | ||
"execution_count": 16, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"metric_mean" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 17, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<div>\n", | ||
"<style scoped>\n", | ||
" .dataframe tbody tr th:only-of-type {\n", | ||
" vertical-align: middle;\n", | ||
" }\n", | ||
"\n", | ||
" .dataframe tbody tr th {\n", | ||
" vertical-align: top;\n", | ||
" }\n", | ||
"\n", | ||
" .dataframe thead th {\n", | ||
" text-align: right;\n", | ||
" }\n", | ||
"</style>\n", | ||
"<table border=\"1\" class=\"dataframe\">\n", | ||
" <thead>\n", | ||
" <tr style=\"text-align: right;\">\n", | ||
" <th></th>\n", | ||
" <th>Bias</th>\n", | ||
" <th>RMSE</th>\n", | ||
" <th>ubRMSE</th>\n", | ||
" <th>Corr</th>\n", | ||
" <th>R2</th>\n", | ||
" <th>NSE</th>\n", | ||
" <th>KGE</th>\n", | ||
" <th>FHV</th>\n", | ||
" <th>FLV</th>\n", | ||
" </tr>\n", | ||
" </thead>\n", | ||
" <tbody>\n", | ||
" <tr>\n", | ||
" <th>HFsources</th>\n", | ||
" <td>-10.431724</td>\n", | ||
" <td>84.941974</td>\n", | ||
" <td>84.29898</td>\n", | ||
" <td>0.625164</td>\n", | ||
" <td>0.380791</td>\n", | ||
" <td>0.380791</td>\n", | ||
" <td>0.308037</td>\n", | ||
" <td>-30.076788</td>\n", | ||
" <td>-100.0</td>\n", | ||
" </tr>\n", | ||
" </tbody>\n", | ||
"</table>\n", | ||
"</div>" | ||
], | ||
"text/plain": [ | ||
" Bias RMSE ubRMSE Corr R2 NSE \\\n", | ||
"HFsources -10.431724 84.941974 84.29898 0.625164 0.380791 0.380791 \n", | ||
"\n", | ||
" KGE FHV FLV \n", | ||
"HFsources 0.308037 -30.076788 -100.0 " | ||
] | ||
}, | ||
"execution_count": 17, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"metric_median" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3.9.7 ('xaj')", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
}, | ||
"orig_nbformat": 4, | ||
"vscode": { | ||
"interpreter": { | ||
"hash": "5ff2b0240d3185dc85fb5f0a6365eefe977ea7c2afca8c64838dc9fcf4f02a96" | ||
} | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.