Skip to content

Commit

Permalink
some old graphics file to show differences of rt_is.123456789
Browse files Browse the repository at this point in the history
  • Loading branch information
alexlib committed Mar 27, 2024
1 parent fdf95b1 commit 2c48418
Showing 1 changed file with 237 additions and 0 deletions.
237 changes: 237 additions & 0 deletions pyptv/test_calibration.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,237 @@
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 17 09:57:49 2017
@author: ron
Here is a script that is meant to help in the task of evaluating the quality of
PyPTV calibration.
Once a PyPTV experiment folder is ready and a calibration is established, the
evaluation here is made by comparing known points of calibration (i.e. calblock)
points, with points that were determined using images of the calibration target
(i.e. dt_lsq points). To generate the dt_lsq points load the calibration images
as the ones to analyze first. Then process the images with:
image coords -> corespondeces -> 3D Positions
The script here is used by loading the point files with the functions:
read_dt_lsq(), and read_calblock(). After that use the function pair_cal_points()
to match points from both sets.
The evaluation itself is made by first plotting the points in 3D with
plot_cal_points(). The distribution of errors can the be examined with the
plot_cal_err_histogram() function
"""

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D





def read_dt_lsq(file_path):
"""
will read a PyPTV dt_lsq file and return the points as a list of
numpy arrays
inputs
======
file_path (string) - absolute path to dt_lsq file
output
======
points (list) - list of numpy (3,1) arrays with (x,y,z) coordinates
"""
f = open(file_path,'r')
N_particles = int(f.readline().strip())
points = []

for i in range(N_particles):
l = f.readline().strip().split()
point = np.array([l[1], l[2], l[3]], dtype=float)
points.append(point)

f.close()

return points




def read_calblock(file_path):
"""
will read a PyPTV calbloack file and return the points as a list of
numpy arrays
inputs
======
file_path (string) - absolute path to dt_lsq file
output
======
points (list) - list of numpy (3,1) arrays with (x,y,z) coordinates
"""
f = open(file_path,'r')
a = f.readlines()
f.close()
points = []

for i in range(len(a)):
l = a[i].strip().split()
try:
point = np.array([l[1], l[2], l[3]], dtype=float)
except:
print('last data', l)
raise ValueError('bad line in calblock file')
points.append(point)

return points




def pair_cal_points(calblock_pnts, dt_lsq_pnts, max_dist = 3.0):
'''
will determine pairs of points from the dt_lsq file and the known calblock
file. for each point in the dt_lsq file, will find the closest point to it
from the calblock points.
inputs
======
calblock_pnts (list) - a list of array(3,1) points from a calblock file
dt_lsq_pnts (list) - a list of array(3,1) points for a dt_lsq file
max_dist (float) - the maximum distance that can be regarded a pair
output
======
pairs_list (list) - a list of pairs of points. the first is a calbclock
point and the second a dt_lsq point
'''
N_cb = len(calblock_pnts)
N_dt = len(dt_lsq_pnts)
N_pairs = min(N_cb, N_dt)

dist_mat = np.zeros( (N_cb, N_dt) )
index_mat = np.zeros( (N_cb, N_dt), dtype=[ ('i', 'i4'),('j','i4' )])
for i in range(dist_mat.shape[0]):
for j in range(dist_mat.shape[1]):
dist_mat[i,j] = np.linalg.norm(calblock_pnts[i] - dt_lsq_pnts[j])
index_mat[i,j] = (i,j)

pairs_list = []
for i in range(N_pairs):
d = np.amin(dist_mat)
if d < max_dist:
w = np.where(dist_mat == np.amin(dist_mat))
i_ = index_mat['i'][w[0][0], w[1][0]]
j_ = index_mat['j'][w[0][0], w[1][0]]
pairs_list.append( (calblock_pnts[i_],
dt_lsq_pnts[j_]) )

dist_mat = np.delete(dist_mat, w[0][0], axis=0)
dist_mat = np.delete(dist_mat, w[1][0], axis=1)
index_mat = np.delete(index_mat, w[0][0], axis=0)
index_mat = np.delete(index_mat, w[1][0], axis=1)
else: break
return pairs_list





def plot_cal_points(pairs_list):
'''
plot a 3D scatter plot of calblock points (red) and dt_lsq points (blue).
input
=====
pairs_list (list) - output from pair_cal_points()
output
======
fig, ax - matplotlib figure and axis objets
'''

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

for p in pairs_list:
ax.plot([p[0][0]], [p[0][2]], [p[0][1]], 'xr')
ax.plot([p[1][0]], [p[1][2]], [p[1][1]], 'xb')

ax.set_xlabel('X')
ax.set_ylabel('Z')
ax.set_zlabel('Y')

return fig, ax




def plot_cal_err_histogram(pairs_list):
'''
plot a 3D scatter plot of calblock points (red) and dt_lsq points (blue).
input
=====
pairs_list (list) - output from pair_cal_points()
output
======
fig, ax - matplotlib figure and axis objets
'''

dx,dy,dz = [],[],[]

for p in pairs_list:
dx.append(p[0][0] - p[1][0])
dy.append(p[0][1] - p[1][1])
dz.append(p[0][2] - p[1][2])

fig,ax = plt.subplots()

lbls = [r'x',r'y',r'z']
for e,lst in enumerate([dx,dy,dz]):
m,s = np.mean(lst), np.std(lst)
h=ax.hist(lst,bins=8,histtype= 'step', lw=3,
label=r'$\langle %s \rangle=%0.3f, \sigma_{%s}=%0.3f$'%(lbls[e],m,lbls[e],s))
#h = np.histogram(lst,bins=10)
#x,y = (h[1][:-1] + h[1][1:])*0.5 , h[0]
#ax.plot(x,y, '-o', lw=2,
#label=r'$%s:$ $\mu=%0.0e, \sigma=%0.1e$'%(lbls[e],m,s))
ax.legend(loc='best')
return fig, ax




























0 comments on commit 2c48418

Please sign in to comment.