forked from alexlib/pyptv
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
some old graphics file to show differences of rt_is.123456789
- Loading branch information
Showing
1 changed file
with
237 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,237 @@ | ||
#!/usr/bin/env python2 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Fri Nov 17 09:57:49 2017 | ||
@author: ron | ||
Here is a script that is meant to help in the task of evaluating the quality of | ||
PyPTV calibration. | ||
Once a PyPTV experiment folder is ready and a calibration is established, the | ||
evaluation here is made by comparing known points of calibration (i.e. calblock) | ||
points, with points that were determined using images of the calibration target | ||
(i.e. dt_lsq points). To generate the dt_lsq points load the calibration images | ||
as the ones to analyze first. Then process the images with: | ||
image coords -> corespondeces -> 3D Positions | ||
The script here is used by loading the point files with the functions: | ||
read_dt_lsq(), and read_calblock(). After that use the function pair_cal_points() | ||
to match points from both sets. | ||
The evaluation itself is made by first plotting the points in 3D with | ||
plot_cal_points(). The distribution of errors can the be examined with the | ||
plot_cal_err_histogram() function | ||
""" | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from mpl_toolkits.mplot3d import Axes3D | ||
|
||
|
||
|
||
|
||
|
||
def read_dt_lsq(file_path): | ||
""" | ||
will read a PyPTV dt_lsq file and return the points as a list of | ||
numpy arrays | ||
inputs | ||
====== | ||
file_path (string) - absolute path to dt_lsq file | ||
output | ||
====== | ||
points (list) - list of numpy (3,1) arrays with (x,y,z) coordinates | ||
""" | ||
f = open(file_path,'r') | ||
N_particles = int(f.readline().strip()) | ||
points = [] | ||
|
||
for i in range(N_particles): | ||
l = f.readline().strip().split() | ||
point = np.array([l[1], l[2], l[3]], dtype=float) | ||
points.append(point) | ||
|
||
f.close() | ||
|
||
return points | ||
|
||
|
||
|
||
|
||
def read_calblock(file_path): | ||
""" | ||
will read a PyPTV calbloack file and return the points as a list of | ||
numpy arrays | ||
inputs | ||
====== | ||
file_path (string) - absolute path to dt_lsq file | ||
output | ||
====== | ||
points (list) - list of numpy (3,1) arrays with (x,y,z) coordinates | ||
""" | ||
f = open(file_path,'r') | ||
a = f.readlines() | ||
f.close() | ||
points = [] | ||
|
||
for i in range(len(a)): | ||
l = a[i].strip().split() | ||
try: | ||
point = np.array([l[1], l[2], l[3]], dtype=float) | ||
except: | ||
print('last data', l) | ||
raise ValueError('bad line in calblock file') | ||
points.append(point) | ||
|
||
return points | ||
|
||
|
||
|
||
|
||
def pair_cal_points(calblock_pnts, dt_lsq_pnts, max_dist = 3.0): | ||
''' | ||
will determine pairs of points from the dt_lsq file and the known calblock | ||
file. for each point in the dt_lsq file, will find the closest point to it | ||
from the calblock points. | ||
inputs | ||
====== | ||
calblock_pnts (list) - a list of array(3,1) points from a calblock file | ||
dt_lsq_pnts (list) - a list of array(3,1) points for a dt_lsq file | ||
max_dist (float) - the maximum distance that can be regarded a pair | ||
output | ||
====== | ||
pairs_list (list) - a list of pairs of points. the first is a calbclock | ||
point and the second a dt_lsq point | ||
''' | ||
N_cb = len(calblock_pnts) | ||
N_dt = len(dt_lsq_pnts) | ||
N_pairs = min(N_cb, N_dt) | ||
|
||
dist_mat = np.zeros( (N_cb, N_dt) ) | ||
index_mat = np.zeros( (N_cb, N_dt), dtype=[ ('i', 'i4'),('j','i4' )]) | ||
for i in range(dist_mat.shape[0]): | ||
for j in range(dist_mat.shape[1]): | ||
dist_mat[i,j] = np.linalg.norm(calblock_pnts[i] - dt_lsq_pnts[j]) | ||
index_mat[i,j] = (i,j) | ||
|
||
pairs_list = [] | ||
for i in range(N_pairs): | ||
d = np.amin(dist_mat) | ||
if d < max_dist: | ||
w = np.where(dist_mat == np.amin(dist_mat)) | ||
i_ = index_mat['i'][w[0][0], w[1][0]] | ||
j_ = index_mat['j'][w[0][0], w[1][0]] | ||
pairs_list.append( (calblock_pnts[i_], | ||
dt_lsq_pnts[j_]) ) | ||
|
||
dist_mat = np.delete(dist_mat, w[0][0], axis=0) | ||
dist_mat = np.delete(dist_mat, w[1][0], axis=1) | ||
index_mat = np.delete(index_mat, w[0][0], axis=0) | ||
index_mat = np.delete(index_mat, w[1][0], axis=1) | ||
else: break | ||
return pairs_list | ||
|
||
|
||
|
||
|
||
|
||
def plot_cal_points(pairs_list): | ||
''' | ||
plot a 3D scatter plot of calblock points (red) and dt_lsq points (blue). | ||
input | ||
===== | ||
pairs_list (list) - output from pair_cal_points() | ||
output | ||
====== | ||
fig, ax - matplotlib figure and axis objets | ||
''' | ||
|
||
fig = plt.figure() | ||
ax = fig.add_subplot(111, projection='3d') | ||
|
||
for p in pairs_list: | ||
ax.plot([p[0][0]], [p[0][2]], [p[0][1]], 'xr') | ||
ax.plot([p[1][0]], [p[1][2]], [p[1][1]], 'xb') | ||
|
||
ax.set_xlabel('X') | ||
ax.set_ylabel('Z') | ||
ax.set_zlabel('Y') | ||
|
||
return fig, ax | ||
|
||
|
||
|
||
|
||
def plot_cal_err_histogram(pairs_list): | ||
''' | ||
plot a 3D scatter plot of calblock points (red) and dt_lsq points (blue). | ||
input | ||
===== | ||
pairs_list (list) - output from pair_cal_points() | ||
output | ||
====== | ||
fig, ax - matplotlib figure and axis objets | ||
''' | ||
|
||
dx,dy,dz = [],[],[] | ||
|
||
for p in pairs_list: | ||
dx.append(p[0][0] - p[1][0]) | ||
dy.append(p[0][1] - p[1][1]) | ||
dz.append(p[0][2] - p[1][2]) | ||
|
||
fig,ax = plt.subplots() | ||
|
||
lbls = [r'x',r'y',r'z'] | ||
for e,lst in enumerate([dx,dy,dz]): | ||
m,s = np.mean(lst), np.std(lst) | ||
h=ax.hist(lst,bins=8,histtype= 'step', lw=3, | ||
label=r'$\langle %s \rangle=%0.3f, \sigma_{%s}=%0.3f$'%(lbls[e],m,lbls[e],s)) | ||
#h = np.histogram(lst,bins=10) | ||
#x,y = (h[1][:-1] + h[1][1:])*0.5 , h[0] | ||
#ax.plot(x,y, '-o', lw=2, | ||
#label=r'$%s:$ $\mu=%0.0e, \sigma=%0.1e$'%(lbls[e],m,s)) | ||
ax.legend(loc='best') | ||
return fig, ax | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|