Skip to content

Commit

Permalink
2024-02-08 19:28:19
Browse files Browse the repository at this point in the history
  • Loading branch information
wizardforcel committed Feb 8, 2024
1 parent 9fdb95c commit fcc5329
Show file tree
Hide file tree
Showing 2 changed files with 543 additions and 0 deletions.
13 changes: 13 additions & 0 deletions totrans/prac-dl-cld_03.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -131,15 +131,18 @@
id: totrans-16
prefs: []
type: TYPE_NORMAL
zh: 在机器学习中,我们需要将数据转换为一组可识别的特征,然后添加一个分类算法对它们进行分类。CNN也是如此。它们由两部分组成:卷积层和全连接层。卷积层的工作是将图像的大量像素转换为一个更小的表示;即特征。全连接层将这些特征转换为概率。全连接层实际上是一个具有隐藏层的神经网络,正如我们在[第1章](part0003.html#2RHM3-13fa565533764549a6f0ab7f11eed62b)中看到的那样。总之,卷积层充当特征提取器,而全连接层充当分类器。[图3-2](part0005.html#a_high-level_overview_of_a_convolutional)显示了CNN的高级概述。
- en: '![A high-level overview of a Convolutional Neural Network](../images/00082.jpeg)'
id: totrans-17
prefs: []
type: TYPE_IMG
zh: '![卷积神经网络的高级概述](../images/00082.jpeg)'
- en: Figure 3-2\. A high-level overview of a CNN
id: totrans-18
prefs:
- PREF_H6
type: TYPE_NORMAL
zh: 图3-2. CNN的高级概述
- en: Imagine that we want to detect a human face. We might want to use a CNN to classify
an image and determine whether it contains a face. Such a CNN would be composed
of several layers connected one after another. These layers represent mathematical
Expand All @@ -149,6 +152,7 @@
id: totrans-19
prefs: []
type: TYPE_NORMAL
zh: 想象一下,我们想要检测一个人脸。我们可能想要使用CNN对图像进行分类,并确定其中是否包含人脸。这样的CNN由几个层连接在一起组成。这些层代表数学运算。一个层的输出是下一个层的输入。第一个(或最底层)是输入层,输入图像被馈送到这里。最后一个(或最顶层)是输出层,给出预测。
- en: The way it works is the image is fed into the CNN and passes through a series
of layers, with each performing a mathematical operation and passing the result
to the subsequent layer. The resulting output is a list of object classes and
Expand All @@ -158,11 +162,13 @@
id: totrans-20
prefs: []
type: TYPE_NORMAL
zh: 它的工作方式是将图像馈送到CNN中,并通过一系列层,每个层执行数学运算并将结果传递给下一个层。最终的输出是一个对象类别列表及其概率。例如,类别如球—65%,草—20%,等等。如果图像的输出包含一个“人脸”类别,概率为70%,我们可以得出结论,图像中包含人脸的可能性为70%。
- en: Note
id: totrans-21
prefs:
- PREF_H6
type: TYPE_NORMAL
zh: 注意
- en: An intuitive (and overly simplified) way to look at CNNs is to see them as a
series of filters. As the word filter implies, each layer acts as a sieve of information,
letting something “pass through” only if it recognizes it. (If you have heard
Expand All @@ -174,6 +180,7 @@
id: totrans-22
prefs: []
type: TYPE_NORMAL
zh: 看待CNN的一种直观(和过于简化的)方式是将它们视为一系列滤波器。正如“滤波器”一词所暗示的,每个层都充当信息的筛子,只有在识别到信息时才“通过”。(如果你听说过电子学中的高通和低通滤波器,这可能会很熟悉。)我们说该层对该信息“激活”。每个层对类似猫、狗、汽车等部分的视觉模式被激活。如果一个层没有识别信息(由于训练时学到的内容),其输出接近于零。CNN是深度学习世界的“保安”!
- en: In the facial detection example, lower-level layers ([Figure 3-3](part0005.html#left_parenthesisaright_parenthesis_lower),
a; layers that are closer to the input image) are “activated” for simpler shapes;
for example, edges and curves. Because these layers activate only for basic shapes,
Expand All @@ -190,13 +197,19 @@
id: totrans-23
prefs: []
type: TYPE_NORMAL
zh: 在人脸检测示例中,较低级别的层([图3-3](part0005.html#left_parenthesisaright_parenthesis_lower)
a; 靠近输入图像的层)被“激活”以获取更简单的形状;例如,边缘和曲线。因为这些层仅对基本形状激活,所以它们可以很容易地被重新用于不同于人脸识别的目的,比如检测汽车(毕竟每个图像都由边缘和曲线组成)。中级别的层([图3-3](part0005.html#left_parenthesisaright_parenthesis_lower)
b)被激活以获取更复杂的形状,比如眼睛、鼻子和嘴唇。这些层不像较低级别的层那样容易被重复使用。它们可能不太适用于检测汽车,但可能仍然适用于检测动物。更高级别的层([图3-3](part0005.html#left_parenthesisaright_parenthesis_lower)
c)被激活以获取更复杂的形状,例如大部分人脸。这些层往往更具任务特定性,因此在其他图像分类问题中最不可重复使用。
- en: '![(a) Lower level activations, followed by (b) mid-level activations and (c)
upper layer activations (image source: Convolutional Deep Belief Networks for
Scalable Unsupervised Learning of Hierarchical Representations, Lee et al., ICML
2009)](../images/00122.jpeg)'
id: totrans-24
prefs: []
type: TYPE_IMG
zh: (a)较低级别的激活,接着是(b)中级别的激活和(c)上层的激活(图片来源:Lee等人的《用于可扩展无监督学习的分层表示的卷积深度信念网络》,ICML
2009)
- en: 'Figure 3-3\. (a) Lower-level activations, followed by (b) midlevel activations
and (c) upper-layer activations (image source: Convolutional Deep Belief Networks
for Scalable Unsupervised Learning of Hierarchical Representations, Lee et al.,
Expand Down
Loading

0 comments on commit fcc5329

Please sign in to comment.