Skip to content

Commit

Permalink
2024-02-08 19:00:18
Browse files Browse the repository at this point in the history
  • Loading branch information
wizardforcel committed Feb 8, 2024
1 parent f360252 commit d7f7dc5
Show file tree
Hide file tree
Showing 2 changed files with 788 additions and 0 deletions.
18 changes: 18 additions & 0 deletions totrans/gen-dl_05.yaml
Original file line number Diff line number Diff line change
@@ -1,52 +1,70 @@
- en: Part II. Methods
id: totrans-0
prefs:
- PREF_H1
type: TYPE_NORMAL
zh: 第二部分. 方法
- en: In [Part II](#part_methods) we will dive into the six families of generative
models, including the theory behind how they work and practical examples of how
to build each type of model.
id: totrans-1
prefs: []
type: TYPE_NORMAL
zh: 在[第二部分](#part_methods)中,我们将深入探讨六种生成模型系列,包括它们工作原理的理论以及如何构建每种类型模型的实际示例。
- en: In [Chapter 3](ch03.xhtml#chapter_vae) we shall take a look at our first generative
deep learning model, the *variational autoencoder*. This technique will allow
us to not only generate realistic faces, but also alter existing images—for example,
by adding a smile or changing the color of someone’s hair.
id: totrans-2
prefs: []
type: TYPE_NORMAL
zh: 在[第3章](ch03.xhtml#chapter_vae)中,我们将看一下我们的第一个生成式深度学习模型,*变分自动编码器*。这种技术不仅可以让我们生成逼真的人脸,还可以改变现有的图像,例如添加微笑或改变某人头发的颜色。
- en: '[Chapter 4](ch04.xhtml#chapter_gan) explores one of the most successful generative
modeling techniques of recent years, the *generative adversarial network*. We
shall see the ways that GAN training has been fine-tuned and adapted to continually
push the boundaries of what generative modeling is able to achieve.'
id: totrans-3
prefs: []
type: TYPE_NORMAL
zh: '[第4章](ch04.xhtml#chapter_gan)探讨了近年来最成功的生成建模技术之一,*生成对抗网络*。我们将看到GAN训练如何被微调和调整,以不断推动生成建模能够实现的边界。'
- en: In [Chapter 5](ch05.xhtml#chapter_autoregressive) we will delve into several
examples of *autoregressive models*, including LSTMs and PixelCNN. This family
of models treats the generation process as a sequence prediction problem—it underpins
today’s state-of-the-art text generation models and can also be used for image
generation.
id: totrans-4
prefs: []
type: TYPE_NORMAL
zh: 在[第5章](ch05.xhtml#chapter_autoregressive)中,我们将深入探讨几个*自回归模型*的例子,包括LSTMs和PixelCNN。这个模型系列将生成过程视为一个序列预测问题,它支撑着今天最先进的文本生成模型,并且也可以用于图像生成。
- en: In [Chapter 6](ch06.xhtml#chapter_flow) we will cover the family of *normalizing
flow models*, including RealNVP. This model is based on a change of variables
formula, which allows the transformation of a simple distribution, such as a Gaussian
distribution, into a more complex distribution in way that preserves tractability.
id: totrans-5
prefs: []
type: TYPE_NORMAL
zh: 在[第6章](ch06.xhtml#chapter_flow)中,我们将涵盖*归一化流模型*系列,包括RealNVP。这个模型基于变量变换公式,允许将简单分布(如高斯分布)转换为更复杂的分布,同时保持可处理性。
- en: '[Chapter 7](ch07.xhtml#chapter_energy_based_models) introduces the family of
*energy-based models*. These models train a scalar energy function to score the
validity of a given input. We will explore a technique for training energy-based
models called contrastive divergence and a technique for sampling new observations
called Langevin dynamics.'
id: totrans-6
prefs: []
type: TYPE_NORMAL
zh: '[第7章](ch07.xhtml#chapter_energy_based_models)介绍了*基于能量的模型*系列。这些模型训练一个标量能量函数来评分给定输入的有效性。我们将探讨一种用于训练基于能量模型的技术,称为对比散度,以及一种用于采样新观测的技术,称为Langevin动力学。'
- en: Finally, in [Chapter 8](ch08.xhtml#chapter_diffusion) we shall explore the family
of *diffusion models*. This technique is based on the idea of iteratively adding
noise to an image and then training a model to remove the noise, giving us the
ability to transform pure noise into realistic samples.
id: totrans-7
prefs: []
type: TYPE_NORMAL
zh: 最后,在[第8章](ch08.xhtml#chapter_diffusion)中,我们将探索*扩散模型*系列。这种技术基于迭代地向图像添加噪声,然后训练模型去除噪声,使我们能够将纯噪声转换为逼真的样本。
- en: By the end of [Part II](#part_methods) you will have built practical examples
of generative models from each of the six generative modeling families and be
able to explain how each works from a theoretical perspective.
id: totrans-8
prefs: []
type: TYPE_NORMAL
zh: 到[第二部分](#part_methods)结束时,您将从每个生成建模系列中构建实际示例,并能够从理论角度解释每种模型的工作原理。
Loading

0 comments on commit d7f7dc5

Please sign in to comment.